import os import shlex import spaces import subprocess def install_cuda_toolkit(): CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_550.54.14_linux.run" CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL) subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE]) subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE]) subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"]) os.environ["CUDA_HOME"] = "/usr/local/cuda" os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"]) os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % ( os.environ["CUDA_HOME"], "" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"], ) os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6" install_cuda_toolkit() os.system("pip list | grep torch") os.system('nvcc -V') print("cd /home/user/app/step1x3d_texture/differentiable_renderer/ && python setup.py install") os.system("cd /home/user/app/step1x3d_texture/differentiable_renderer/ && python setup.py install") subprocess.run(shlex.split("pip install custom_rasterizer-0.1-cp310-cp310-linux_x86_64.whl"), check=True) import time import uuid import torch import trimesh import argparse import numpy as np import gradio as gr from step1x3d_geometry.models.pipelines.pipeline import Step1X3DGeometryPipeline from step1x3d_texture.pipelines.step1x_3d_texture_synthesis_pipeline import ( Step1X3DTexturePipeline, ) from step1x3d_geometry.models.pipelines.pipeline_utils import reduce_face, remove_degenerate_face parser = argparse.ArgumentParser() parser.add_argument( "--geometry_model", type=str, default="Step1X-3D-Geometry-Label-1300m" ) parser.add_argument( "--texture_model", type=str, default="Step1X-3D-Texture" ) parser.add_argument("--cache_dir", type=str, default="cache") args = parser.parse_args() os.makedirs(args.cache_dir, exist_ok=True) geometry_model = Step1X3DGeometryPipeline.from_pretrained( "stepfun-ai/Step1X-3D", subfolder=args.geometry_model ).to("cuda") texture_model = Step1X3DTexturePipeline.from_pretrained("stepfun-ai/Step1X-3D", subfolder=args.texture_model) @spaces.GPU(duration=240) def generate_func( input_image_path, guidance_scale, inference_steps, max_facenum, symmetry, edge_type ): # geometry_model = geometry_model.to("cuda") if "Label" in args.geometry_model: symmetry_values = ["x", "asymmetry"] out = geometry_model( input_image_path, label={"symmetry": symmetry_values[int(symmetry)], "edge_type": edge_type}, guidance_scale=float(guidance_scale), octree_resolution=384, max_facenum=int(max_facenum), num_inference_steps=int(inference_steps), ) else: out = geometry_model( input_image_path, guidance_scale=float(guidance_scale), num_inference_steps=int(inference_steps), max_facenum=int(max_facenum), ) save_name = str(uuid.uuid4()) print(save_name) geometry_save_path = f"{args.cache_dir}/{save_name}.glb" geometry_mesh = out.mesh[0] geometry_mesh.export(geometry_save_path) geometry_mesh = remove_degenerate_face(geometry_mesh) geometry_mesh = reduce_face(geometry_mesh) textured_mesh = texture_model(input_image_path, geometry_mesh) textured_save_path = f"{args.cache_dir}/{save_name}-textured.glb" textured_mesh.export(textured_save_path) torch.cuda.empty_cache() print("Generate finish") return geometry_save_path, textured_save_path with gr.Blocks(title="Step1X-3D demo") as demo: gr.Markdown("# Step1X-3D") with gr.Row(): with gr.Column(scale=2): input_image = gr.Image(label="Image", type="filepath") guidance_scale = gr.Number(label="Guidance Scale", value="7.5") inference_steps = gr.Slider( label="Inferece Steps", minimum=1, maximum=100, value=50 ) max_facenum = gr.Number(label="Max Face Num", value="400000") symmetry = gr.Radio( choices=["symmetry", "asymmetry"], label="Symmetry Type", value="symmetry", type="index", ) edge_type = gr.Radio( choices=["sharp", "normal", "smooth"], label="Edge Type", value="sharp", type="value", ) btn = gr.Button("Start") with gr.Column(scale=4): textured_preview = gr.Model3D(label="Textured", height=380) geometry_preview = gr.Model3D(label="Geometry", height=380) with gr.Column(scale=1): gr.Examples( examples=[ ["examples/images/000.png"], ["examples/images/001.png"], ["examples/images/004.png"], ["examples/images/008.png"], ["examples/images/028.png"], ["examples/images/032.png"], ["examples/images/061.png"], ["examples/images/107.png"], ], inputs=[input_image], cache_examples=False, ) btn.click( generate_func, inputs=[ input_image, guidance_scale, inference_steps, max_facenum, symmetry, edge_type, ], outputs=[geometry_preview, textured_preview], ) demo.launch(ssr_mode=False)