import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Load DeepSeek model model_id = "deepseek-ai/deepseek-llm-7b-chat" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") def generate_response(prompt, temperature): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate( **inputs, do_sample=True, temperature=temperature, top_p=0.9 ) return tokenizer.decode(outputs[0], skip_special_tokens=True) # return "Hello " + name + "!!" demo = gr.Interface(fn=generate_response, inputs=[ gr.Textbox(label="Prompt", lines=6, placeholder="Ask something..."), gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature") ], outputs="text" ) demo.launch()