try: import detectron2 except: import os os.system('pip install git+https://github.com/facebookresearch/detectron2.git') # Manipulación de Datos y Bibliotecas Científicas import csv # Leer y escribir archivos CSV import numpy as np # Cálculos numéricos con soporte para matrices y arrays import pandas as pd # Manipulación y análisis de datos, especialmente con DataFrames import random # Generar números aleatorios y realizar operaciones aleatorias import datetime # Trabajar con fechas y horas from datetime import datetime # Visualización import matplotlib.pyplot as plt # Crear gráficos estáticos, interactivos y animados from matplotlib.path import Path # Trabajar con caminos geométricos en visualizaciones from matplotlib.pyplot import axis # Procesamiento de Imágenes y Visión por Computadora (OpenCV y Scikit-Image) import cv2 # Para procesamiento de imágenes y tareas de visión por computadora from skimage import measure, io, color, draw # Funciones de procesamiento de imágenes en skimage from skimage.measure import regionprops # Para medir propiedades de regiones en imágenes # Manipulación de Imágenes from PIL import Image # Para abrir, manipular y guardar imágenes en diferentes formatos # Serialización de Datos import json # Para analizar y serializar datos JSON import yaml # Para leer y escribir archivos YAML (serialización de datos en formato humano) # Barra de Progreso from tqdm import tqdm # Para mostrar una barra de progreso en tareas largas # Diagramas Ternarios import ternary # Para crear diagramas ternarios (ej. gráficos de 3 variables) # Generación de Reportes PDF from fpdf import FPDF # Para crear documentos PDF de forma sencilla import gradio as gr import requests from torch import nn import requests import torch from detectron2 import model_zoo from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg from detectron2.utils.visualizer import Visualizer from detectron2.data import MetadataCatalog models = [ { "name": "Version 1 (2-class)", "model_path": "https://huggingface.co/stalyn314/PaucarMineralModel/resolve/main/xplx10x_d2.pth", "classes": ["minerales", "Afs", "Amp", "Bt", "Ms", "Ol", "Pl", "Px", "Qz"], "cfg": None, "metadata": None }, { "name": "Version 2 (4-class)", "model_path": "https://huggingface.co/stalyn314/PaucarMineralModel/resolve/main/10xmodel_d2.pth", "classes": ["minerales", "Afs", "Amp", "Bt", "Ms", "Ol", "Pl", "Px", "Qz"], "cfg": None, "metadata": None }, ] model_name_to_id = {model["name"] : id_ for id_, model in enumerate(models)} for model in models: model["cfg"] = get_cfg() model["cfg"].merge_from_file("./configs/detectron2/mask_rcnn_X_101_32x8d_FPN_3x.yaml") model["cfg"].MODEL.ROI_HEADS.NUM_CLASSES = len(model["classes"]) model["cfg"].MODEL.WEIGHTS = model["model_path"] model["metadata"] = MetadataCatalog.get(model["name"]) model["metadata"].thing_classes = model["classes"] if not torch.cuda.is_available(): model["cfg"].MODEL.DEVICE = "cpu" def inference(image_url, image, min_score, model_name): if image_url: r = requests.get(image_url) if r: im = np.frombuffer(r.content, dtype="uint8") im = cv2.imdecode(im, cv2.IMREAD_COLOR_BGR2RGB) else: # Model expect BGR! im = image[:,:,::-1] model_id = model_name_to_id[model_name] models[model_id]["cfg"].MODEL.ROI_HEADS.SCORE_THRESH_TEST = min_score predictor = DefaultPredictor(models[model_id]["cfg"]) outputs = predictor(im) v = Visualizer(im, models[model_id]["metadata"], scale=1.2) out = v.draw_instance_predictions(outputs["instances"].to("cpu")) # Convertir la imagen de salida de BGR a RGB result_image = out.get_image() # Esto sigue estando en BGR result_image_rgb = result_image[:, :, ::-1] # Convertir BGR a RGB return result_image_rgb title = "# DBMDZ Detectron2 Model Demo" description = """ This demo introduces an interactive playground for our trained Detectron2 model. Currently, two models are supported that were trained on manually annotated segments from digitized books: * [Version 1 (2-class)](https://huggingface.co/dbmdz/detectron2-model): This model can detect *Illustration* or *Illumination* segments on a given page. * [Version 2 (4-class)](https://huggingface.co/dbmdz/detectron2-v2-model): This model is more powerful and can detect *Illustration*, *Stamp*, *Initial* or *Other* segments on a given page. """ footer = "🥨" with gr.Blocks() as demo: gr.Markdown(title) gr.Markdown(description) with gr.Tab("From URL"): url_input = gr.Textbox(label="Image URL", placeholder="https://api.digitale-sammlungen.de/iiif/image/v2/bsb10483966_00008/full/500,/0/default.jpg") with gr.Tab("From Image"): image_input = gr.Image(type="numpy", label="Input Image") min_score = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Minimum score") model_name = gr.Radio(choices=[model["name"] for model in models], value=models[0]["name"], label="Select Detectron2 model") output_image = gr.Image(type="pil", label="Output") inference_button = gr.Button("Submit") inference_button.click(fn=inference, inputs=[url_input, image_input, min_score, model_name], outputs=output_image) gr.Markdown(footer) demo.launch() #gr.Interface( # inference, # [gr.inputs.Textbox(label="Image URL", placeholder="https://api.digitale-sammlungen.de/iiif/image/v2/bsb10483966_00008/full/500,/0/default.jpg"), # gr.inputs.Image(type="numpy", label="Input Image"), # gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Minimum score"), # gr.Radio(choices=[model["name"] for model in models], value=models[0]["name"], label="Select Detectron2 model"), # ], # gr.outputs.Image(type="pil", label="Output"), # title=title, # description=description, # article=article, # examples=[]).launch()