import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList import time import numpy as np from torch.nn import functional as F import os token_key = os.environ.get("HF_ACCESS_TOKEN") # if torch.cuda.is_available(): # m = AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-tuned-alpha-7b",use_auth_token=token_key, torch_dtype=torch.float16).cuda() # tok = AutoTokenizer.from_pretrained("stabilityai/stablelm-tuned-alpha-7b",use_auth_token=token_key) # else: # m = AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-tuned-alpha-7b",use_auth_token=token_key, torch_dtype=torch.float16) # tok = AutoTokenizer.from_pretrained("stabilityai/stablelm-tuned-alpha-7b",use_auth_token=token_key) # generator = pipeline('text-generation', model=m, tokenizer=tok, device=0) # start_message = """<|SYSTEM|># StableAssistant # - StableAssistant is A helpful and harmless Open Source AI Language Model developed by Stability and CarperAI. # - StableAssistant is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user. # - StableAssistant is more than just an information source, StableAssistant is also able to write poetry, short stories, and make jokes. # - StableAssistant will refuse to participate in anything that could harm a human.""" # class StopOnTokens(StoppingCriteria): # def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: # stop_ids = [50278, 50279, 50277, 1, 0] # for stop_id in stop_ids: # if input_ids[0][-1] == stop_id: # return True # return False # def contrastive_generate(text, bad_text): # with torch.no_grad(): # if torch.cuda_is_available(): # tokens = tok(text, return_tensors="pt")['input_ids'].cuda()[:,:4096-1024] # bad_tokens = tok(bad_text, return_tensors="pt")['input_ids'].cuda()[:,:4096-1024] # else: # tokens = tok(text, return_tensors="pt")['input_ids'][:,:4096-1024] # bad_tokens = tok(bad_text, return_tensors="pt")['input_ids'][:,:4096-1024] # history = None # bad_history = None # curr_output = list() # for i in range(1024): # out = m(tokens, past_key_values=history, use_cache=True) # logits = out.logits # history = out.past_key_values # bad_out = m(bad_tokens, past_key_values=bad_history, use_cache=True) # bad_logits = bad_out.logits # bad_history = bad_out.past_key_values # probs = F.softmax(logits.float(), dim=-1)[0][-1].cpu() # bad_probs = F.softmax(bad_logits.float(), dim=-1)[0][-1].cpu() # logits = torch.log(probs) # bad_logits = torch.log(bad_probs) # logits[probs > 0.1] = logits[probs > 0.1] - bad_logits[probs > 0.1] # probs = F.softmax(logits) # out = int(torch.multinomial(probs, 1)) # if out in [50278, 50279, 50277, 1, 0]: # break # else: # curr_output.append(out) # out = np.array([out]) # tokens = torch.from_numpy(np.array([out])).to( # tokens.device) # bad_tokens = torch.from_numpy(np.array([out])).to( # tokens.device) # return tok.decode(curr_output) # def generate(text, bad_text=None): # stop = StopOnTokens() # result = generator(text, max_new_tokens=1024, num_return_sequences=1, num_beams=1, do_sample=True, temperature=1.0, top_p=0.95, top_k=1000, stopping_criteria=StoppingCriteriaList([stop])) # return result[0]["generated_text"].replace(text, "") # def user(user_message, history): # return "", history + [[user_message, ""]] # def bot(history, curr_system_message): # messages = curr_system_message + "".join(["".join(["<|USER|>"+item[0], "<|ASSISTANT|>"+item[1]]) for item in history]) # output = generate(messages) # history[-1][1] = output # time.sleep(1) # return history # def system_update(msg): # global curr_system_message # curr_system_message = msg # with gr.Blocks() as demo: # gr.Markdown("###StableLM-tuned-Alpha-7B Chat") # with gr.Row(): # with gr.Column(): # chatbot = gr.Chatbot([]) # clear = gr.Button("Clear") # with gr.Column(): # system_msg = start_message#gr.Textbox(start_message, label="System Message", interactive=True) # msg = gr.Textbox(label="Chat Message") # msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( # bot, [chatbot, system_msg], chatbot # ) # system_msg.change(system_update, system_msg, None, queue=False) # clear.click(lambda: None, None, chatbot, queue=False) # demo.launch(share=True)