import streamlit as st from transformers import pipeline st.set_page_config(page_title="Your English audio to Chinese text, page_icon="🦜") st.header("Turn Your English Audio to Chinese text") uploaded_file = st.file_uploader("Select an audio file",type=["mp3","mp4"]) if uploaded_file is not None: print(uploaded_file) bytes_data = uploaded_file.getvalue() with open(uploaded_file.name, "wb") as file: file.write(bytes_data) st.image(uploaded_file, caption="Uploaded Audio", use_column_width=True) # function part def audio2txt(audioname): pipe = pipeline("Automatic-Speech-Recognition", model="avery0/pipeline1model2") rst = pipe(audioname) return rst def translation(txt): pipe = pipeline(model="translation", model="DDDSSS/translation_en-zh") rst = pipe(txt) return rst def main(): #Stage 1: Aido to Text st.text('Processing audio2txt...') txt = audio2txt(uploaded_file.name) st.write(txt) #Stage 2: Text to Story st.text('Generating a translation...') txt2 = translation(txt) st.write(txt2) # main part if __name__ == "__main__": main()