# test_detector.py from detector import detect_clothing from PIL import Image, ImageDraw import os def visualize_and_print(image_path, do_bg_remove=False, output_dir="vis"): # Ensure output folder exists os.makedirs(output_dir, exist_ok=True) img = Image.open(image_path).convert("RGB") print(f"\n--- Testing {os.path.basename(image_path)} (bg_remove={do_bg_remove}) ---") # Run your detector dets = detect_clothing(img, do_bg_remove=do_bg_remove) if not dets: print("No detections!") return # Print raw detections # Print raw detections for i, d in enumerate(dets.values(), 1): lbl = d["label"] scr = d["score"] box = d.get("box", []) print(f" {i}. {lbl:12s} @ {scr:.2f} → {box}") # Draw boxes vis = img.copy() draw = ImageDraw.Draw(vis) for d in dets.values(): if d.get("box"): x0, y0, x1, y1 = d["box"] draw.rectangle([x0, y0, x1, y1], outline="red", width=2) draw.text((x0, y0 - 10), f"{d['label']}:{d['score']:.2f}", fill="red") # Save visualization out_path = os.path.join(output_dir, os.path.basename(image_path)) vis.save(out_path) print(f" Visualization saved to {out_path}") if __name__ == "__main__": # List your test images here samples = [ "/Users/tanzimfarhan/Desktop/Python/Codes/SLU/CS5930/FinalProject/StyleSavvy/images/casual.jpg", "/Users/tanzimfarhan/Desktop/Python/Codes/SLU/CS5930/FinalProject/StyleSavvy/images/WomenCasual.jpg", ] for img_path in samples: visualize_and_print(img_path, do_bg_remove=False) # visualize_and_print(img_path, do_bg_remove=True)