import streamlit as st import joblib,torch import time from PIL import Image device = 'cuda' if torch.cuda.is_available() else 'cpu' loaded_tokenizer = joblib.load("finalized_tokenizer.sav") loaded_model = joblib.load("finalized_model.sav") st.title('Text Summarization using Pegasus') txt = st.text_area('Enter Text to summarize here', '') with st.sidebar: st.subheader("Text Summarization using Pegasus") st.write("PEGASUS uses an encoder-decoder model for sequence-to-sequence learning. In such a model, the encoder will first take into consideration the context of the whole input text and encode the input text into something called context vector, which is basically a numerical representation of the input text. This numerical representation will then be fed to the decoder whose job is decode the context vector to produce the summary.") image =Image.open("Pegasus_model.png") st.image(image, caption='Pegasus Model') st.code("App built by Srishti Pandey",language="python") if st.button('Summarize'): with st.spinner('Summarizing..'): batch = loaded_tokenizer(txt, truncation=True, padding='longest', return_tensors="pt").to(device) translated = loaded_model.generate(**batch) tgt_text = loaded_tokenizer.batch_decode(translated, skip_special_tokens=True) st.success('Summarized Text') st.subheader(tgt_text[0])