import numpy as np import gradio as gr from PIL import Image from pytorch_grad_cam import GradCAM from pytorch_grad_cam.utils.image import show_cam_on_image import torch from torchvision import transforms from model import CustomResNet from utils.utils import wrong_predictions from utils.dataloader import get_dataloader import random from collections import OrderedDict import os test_o = get_dataloader() # test_o=next(iter(test_o)) examples_dir = os.path.join(os.getcwd(), 'examples') examples = [[os.path.join(examples_dir, img), 0.5] for img in os.listdir(examples_dir)] model = CustomResNet() model.load_state_dict(torch.load('modelp.ckpt', map_location='cpu')['state_dict']) #, strict = False) # model = model.cpu() classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] norm_mean=(0.4914, 0.4822, 0.4465) norm_std=(0.2023, 0.1994, 0.2010) misclassified_images, all_predictions = wrong_predictions(model,test_o, norm_mean, norm_std, classes, 'cpu') # layers = ['layer_1', 'layer_3'] # layers = [model.layer_1, model.layer_2, model.layer_3] def inference(input_img, transparency, layer_num, top_classes): input_img_ori = input_img.copy() transform = transforms.ToTensor() # transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize( # mean=[0.485,0.456,0.406], # std=[0.229, 0.224, 0.255] # )]) inv_normalize = transforms.Normalize( mean=[-0.485/0.229, -0.456/0.224, -0.406/0.255], std=[1/0.229, 1/0.224, 1/0.255] ) input_img = transform(input_img) # input_img = input_img.to(device) input_img = input_img.unsqueeze(0) outputs = model(input_img) _, prediction = torch.max(outputs, 1) softmax = torch.nn.Softmax(dim=0) outputs = softmax(outputs.flatten()) # print(outputs) confidences = {classes[i]: float(outputs[i]) for i in range(10)} confidences = OrderedDict(sorted(confidences.items(), key=lambda x:x[1], reverse=True)) # print(confidences) filtered_confidences ={}# OrderedDict() for i, (key, val) in enumerate(confidences.items()): if i == top_classes: break filtered_confidences[key] = val if layer_num == 1: target_layers = [model.layer_1] elif layer_num == 2: target_layers = [model.layer_2] else: target_layers = [model.layer_3] cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False) grayscale_cam = cam(input_tensor=input_img, targets=None) grayscale_cam = grayscale_cam[0, :] img = input_img.squeeze(0) img = inv_normalize(img) rgb_img = np.transpose(img, (1, 2, 0)) rgb_img = np.array(np.clip(rgb_img,0,1), np.float32) visualization = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True, image_weight=transparency) # visualization = input_img_ori return filtered_confidences, visualization # return filtered_confidences, superimposed_img def get_misclassified_images(num): outputimgs = [] # misclassified_images = wrong_predictions(model,test_o, norm_mean, norm_std, classes, 'cpu') for i in range(int(num)): # misclassified_images[0][0].cpu().numpy() inv_normalize = transforms.Normalize( mean=[-0.485/0.229, -0.456/0.224, -0.406/0.255], std=[1/0.229, 1/0.224, 1/0.255] ) inv_tensor = np.array(inv_normalize(misclassified_images[random.randint(2,98)][0]).cpu().permute(1,2,0)*255, dtype='uint8') outputimgs.append(inv_tensor) return outputimgs def get_gradcam_images(num, transparency, layer_num): outcoms=[] for i in range(int(num)): input_img = all_predictions[random.randint(2,98)][0] inv_normalize = transforms.Normalize( mean=[-0.485/0.229, -0.456/0.224, -0.406/0.255], std=[1/0.229, 1/0.224, 1/0.255] ) input_img = input_img.unsqueeze(0) if layer_num == 1: target_layers = [model.layer_1] elif layer_num == 2: target_layers = [model.layer_2] else: target_layers = [model.layer_3] cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False) grayscale_cam = cam(input_tensor=input_img, targets=None) grayscale_cam = grayscale_cam[0, :] img = input_img.squeeze(0) img = inv_normalize(img) rgb_img = np.transpose(img, (1, 2, 0)) rgb_img = np.array(np.clip(rgb_img,0,1), np.float32) visualization = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True, image_weight=transparency) outcoms.append(visualization) return outcoms # demo = gr.Interface(inference, [gr.Image(shape=(32, 32)), gr.Slider(0, 1)], ["text", gr.Image(shape=(32, 32)).style(width=128, height=128)]) inference_new_image = gr.Interface( inference, inputs = [gr.Image(shape=(32, 32), label="Input Image"), gr.Slider(0, 1, value = 0.3, label="transparency?"), gr.Slider(1, 3, value = 1,step=1, label="layer?"), gr.Slider(1, 10, value = 3, step=1, label="top classes?")], outputs = [gr.Label(),gr.Image(shape=(32, 32), label="Model Prediction").style(width=300, height=300)], title = 'gradio app', description = 'for dl purposes', examples = examples, ) misclassified_interface = gr.Interface( get_misclassified_images, inputs = [gr.Number(value=10, label="images number")], outputs = [gr.Gallery(label="misclassified images")], title = 'gradio app', description = 'for dl purposes' ) gradcam_images = gr.Interface( get_gradcam_images, inputs = [gr.Number(value=10, label="images number"), gr.Slider(0, 1, value = 0.3, label="transparency?"), gr.Slider(1, 3, value = 1,step=1, label="layer?")], outputs = [gr.Gallery(label="gradcam images")], title = 'gradio app', description = 'for dl purposes' ) demo = gr.TabbedInterface([inference_new_image, misclassified_interface, gradcam_images], tab_names=["Input image", "Misclassified Images", "grad cam images"], title="customresnet gradcam") demo.launch()