from jira.client import JIRA import pandas as pd def get_details(project_id): # Specify a server key. It should be your # domain name link. yourdomainname.atlassian.net jiraOptions = {'server': "https://srikanthnm.atlassian.net"} # Get a JIRA client instance, pass, # Authentication parameters # and the Server name. # emailID = your emailID # token = token you receive after registration jira = JIRA(options=jiraOptions, basic_auth=( "srikanth.nm@gmail.com", "ATATT3xFfGF09rugcjiT06v8xMayt5ggayMNiwz4b6w07PWQxPvpi4fMDzwwHxKt-v8dGx49uiulIMKHUUYroeS8cXvMKYfi7sQnFsYNfGslPVqSq1BQrzPhTio-xmYOHcit5ijzU9cSGGa7eLXUMxQTsSQjLhtZ-EQPI8h6aki690_-evLFZmU=3910FFD4")) # Search all issues mentioned against a project name. lstKeys = [] lstSummary = [] lstReporter = [] for singleIssue in jira.search_issues(jql_str=f'project = {project_id}'): lstKeys.append(singleIssue.key) lstSummary.append(singleIssue.fields.summary) lstReporter.append(singleIssue.fields.assignee.displayName) df_output = pd.DataFrame() df_output['Key'] = lstKeys df_output['Summary'] = lstSummary df_output['Assignee'] = lstReporter df_output.to_csv('jira.csv', index=False) return df_output def ask_question(strQuery): from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import pandas as pd tokenizer = AutoTokenizer.from_pretrained("Yale-LILY/reastap-large") model = AutoModelForSeq2SeqLM.from_pretrained("Yale-LILY/reastap-large") table = pd.read_csv("jira.csv") query = strQuery encoding = tokenizer(table=table, query=query, return_tensors="pt") outputs = model.generate(**encoding) return (tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])