from datasets import load_dataset import streamlit as st from huggingface_hub import hf_hub_download import gzip import json @st.cache(allow_output_mutation=True) def get_model(): model_id = "srihariEmids/emidsinfo-fine-tune-llamamodel" model = hf_hub_download(model_id, library_name="transformers") return model def predict(text): model = get_model() inputs = model.prepare_inputs_for_generation(text, max_length=512, return_tensors="pt") outputs = model.generate(**inputs) return outputs def main(): text = st.text_input("Enter text to analyze:") prediction = predict(text) st.write(prediction) if __name__ == "__main__": main()