from PIL import Image import os import requests import torch from torchvision import transforms from torchvision.transforms.functional import InterpolationMode device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') import gradio as gr from models.blip_vqa import blip_vqa image_size_vq = 480 transform_vq = transforms.Compose([ transforms.Resize((image_size_vq,image_size_vq),interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) ]) model_url_vq = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_vqa.pth' model_vq = blip_vqa(pretrained=model_url_vq, image_size=480, vit='base') model_vq.eval() model_vq = model_vq.to(device) def inference(raw_image, question, mnlen, mxlen, token): if token != os.environ["TOKEN"]: return "Rong token" image_vq = transform_vq(raw_image).unsqueeze(0).to(device) with torch.no_grad(): answer = model_vq(image_vq, question, train=False, inference='generate', mina_len=mnlen, maxa_len=mxlen) return 'answer: '+answer[0] inputs = [gr.Image(type='pil'), gr.Textbox(lines=2, label="Question"), gr.Number(value=1, label="Min length", precision=0), gr.Number(value=10, label="Max length", precision=0), gr.Textbox(lines=1, label="Auth token")] outputs = gr.outputs.Textbox(label="Output") title = "BLIP" description = "Gradio endpoint for spuun's BLIP (Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation (Salesforce Research)). To use it you need to obtain a token from me :) Read more at the links below." article = "
BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation | Github Repo
" gr.Interface(inference, inputs, outputs, title=title, description=description, article=article).launch()