import gradio as gr import torch from transformers import DetrImageProcessor, DetrForObjectDetection from color import Color from color_wheel import ColorWheel from PIL import ImageDraw, ImageFont processor = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50') model = DetrForObjectDetection.from_pretrained('facebook/detr-resnet-50') def process_image(image, margin): if image is None: yield [None, None, None] return color = Color.fromRgb(0xff, 0x0, 0x0) cwt = ColorWheel(color) colors = [] for t in cwt.tone15: cw = ColorWheel(Color.fromRgb(t.r, t.g, t.b)) for h in cw.hue: colors.append((h.r, h.g, h.b)) inputs = processor(images=image, return_tensors='pt') outputs = model(**inputs) target_sizes = torch.tensor([image.size[::-1]]) results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] index = 0 gallery = [] labels = [] drawImage = image.copy() draw = ImageDraw.Draw(drawImage) for score, label, box in zip(results['scores'], results['labels'], results['boxes']): if index >= len(colors): break box = [round(i) for i in box.tolist()] box[0] = max(0, box[0] - margin) box[1] = max(0, box[1] - margin) box[2] = min(image.width, box[2] + margin) box[3] = min(image.height, box[3] + margin) draw.rectangle([(box[0], box[1]), (box[2], box[3])], outline=colors[index], width=4) gallery.append(image.crop((box[0], box[1], box[2], box[3]))) labels.append(model.config.id2label[label.item()]) index += 1 yield [drawImage, gallery, ','.join(labels)] app = gr.Interface( title='Object Detection for Image', fn=process_image, inputs=[ gr.Image(type='pil'), gr.Slider(maximum=100, step=1, label='margin'), ], outputs=[ gr.Image(label='boxes', type='pil'), gr.Gallery(label='gallery', columns=8, height=140), gr.Textbox(label='text'), ], allow_flagging='never', examples=[['examples/Wild.jpg', 0], ['examples/Football-Match.jpg', 0]], #cache_examples=False ) app.queue(concurrency_count=20) app.launch()