import torch from scipy.io.wavfile import write from main_pipeline import CleaningPipeline import gradio as gr title = "Audio denoising and speaker diarization " example_list = [ ["dialog.mp3"] ] def app_pipeline(audio): device = 'cuda' if torch.cuda.is_available() else 'cpu' cleaning_pipeline = CleaningPipeline(device) audio_path = 'test.wav' write(audio_path, audio[0], audio[1]) result = cleaning_pipeline(audio_path) if result != []: return result app = gr.Interface( app_pipeline, gr.Audio(type="numpy", label="Input_audio"), [gr.Audio(visible=True, label='denoised_audio' if i == 0 else f'speaker{i}') for i in range(20)], title=title, examples=example_list, cache_examples=False, ) app.launch(debug=True, enable_queue=True, )