import spacy from spacy import displacy import random from spacy.tokens import Span import gradio as gr import pandas as pd DEFAULT_MODEL = "en_core_web" DEFAULT_TEXT = "Apple is looking at buying U.K. startup for $1 billion." DEFAULT_TOK_ATTR = ['idx', 'text', 'pos_', 'lemma_', 'shape_', 'dep_'] DEFAULT_ENTS = ['CARDINAL', 'DATE', 'EVENT', 'FAC', 'GPE', 'LANGUAGE', 'LAW', 'LOC', 'MONEY', 'NORP', 'ORDINAL', 'ORG', 'PERCENT', 'PERSON', 'PRODUCT', 'QUANTITY', 'TIME', 'WORK_OF_ART'] texts = {"en": DEFAULT_TEXT, "ca": "Apple està buscant comprar una startup del Regne Unit per mil milions de dòlars", "da": "Apple overvejer at købe et britisk startup for 1 milliard dollar.", "de": "Die ganze Stadt ist ein Startup: Shenzhen ist das Silicon Valley für Hardware-Firmen", "el": "Η άνιση κατανομή του πλούτου και του εισοδήματος, η οποία έχει λάβει τρομερές διαστάσεις, δεν δείχνει τάσεις βελτίωσης.", "es": "Apple está buscando comprar una startup del Reino Unido por mil millones de dólares.", "fi": "Itseajavat autot siirtävät vakuutusvastuun autojen valmistajille", "fr": "Apple cherche à acheter une start-up anglaise pour 1 milliard de dollars", "it": "Apple vuole comprare una startup del Regno Unito per un miliardo di dollari", "ja": "アップルがイギリスの新興企業を10億ドルで購入を検討", "ko": "애플이 영국의 스타트업을 10억 달러에 인수하는 것을 알아보고 있다.", "lt": "Jaunikis pirmąją vestuvinę naktį iškeitė į areštinės gultą", "nb": "Apple vurderer å kjøpe britisk oppstartfirma for en milliard dollar.", "nl": "Apple overweegt om voor 1 miljard een U.K. startup te kopen", "pl": "Poczuł przyjemną woń mocnej kawy.", "pt": "Apple está querendo comprar uma startup do Reino Unido por 100 milhões de dólares", "ro": "Apple plănuiește să cumpere o companie britanică pentru un miliard de dolari", "ru": "Apple рассматривает возможность покупки стартапа из Соединённого Королевства за $1 млрд", "sv": "Apple överväger att köpa brittisk startup för 1 miljard dollar.", "zh": "作为语言而言,为世界使用人数最多的语言,目前世界有五分之一人口做为母语。"} def get_all_models(): with open("requirements.txt") as f: content = f.readlines() models = [] for line in content: if "huggingface.co" in line: model = "_".join(line.split("/")[4].split("_")[:3]) if model not in models: models.append(model) return models models = get_all_models() def dependency(text, col_punct, col_phrase, compact, model): nlp = spacy.load(model + "_sm") doc = nlp(text) options = {"compact": compact, "collapse_phrases": col_phrase, "collapse_punct": col_punct} html = displacy.render(doc, style="dep", options=options) return html def entity(text, ents, model): nlp = spacy.load(model + "_sm") doc = nlp(text) options = {"ents": ents} html = displacy.render(doc, style="ent", options=options) return html def token(text, attributes, model): nlp = spacy.load(model + "_sm") data = [] doc = nlp(text) for tok in doc: tok_data = [] for attr in attributes: tok_data.append(getattr(tok, attr)) data.append(tok_data) data = pd.DataFrame(data, columns=attributes) return data def random_vectors(text, model): nlp = spacy.load(model + "_md") doc = nlp(text) n_chunks = [chunk for chunk in doc.noun_chunks if doc.noun_chunks] words = [tok for tok in doc if not tok.is_stop and tok.pos_ not in [ 'PUNCT', "PROPN"]] str_list = n_chunks + words choice = random.choices(str_list, k=2) return round(choice[0].similarity(choice[1]), 2), choice[0].text, choice[1].text def vectors(input1, input2, model): nlp = spacy.load(model + "_md") return round(nlp(input1).similarity(nlp(input2)), 2) def span(text, span1, span2, label1, label2, model): nlp = spacy.load(model + "_sm") doc = nlp(text) if span1: idx1_1 = 0 idx1_2 = 0 idx2_1 = 0 idx2_2 = 0 span1 = [split for split in span1.split(" ") if split] span2 = [split for split in span2.split(" ") if split] for i in range(len(list(doc))): tok = list(doc)[i] if span1[0] == tok.text: idx1_1 = i if span1[-1] == tok.text: idx1_2 = i + 1 if span2[0] == tok.text: idx2_1 = i if span2[-1] == tok.text: idx2_2 = i + 1 doc.spans["sc"] = [ Span(doc, idx1_1, idx1_2, label1), Span(doc, idx2_1, idx2_2, label2), ] else: idx1_1 = 0 idx1_2 = round(len(list(doc)) / 2) idx2_1 = 0 idx2_2 = 1 doc.spans["sc"] = [ Span(doc, idx1_1, idx1_2, label1), Span(doc, idx2_1, idx2_2, label2), ] html = displacy.render(doc, style="span") return html def get_text(model): for i in range(len(models)): model = model.split("_")[0] new_text = texts[model] return new_text demo = gr.Blocks() with demo: model_input = gr.Dropdown( choices=models, value=DEFAULT_MODEL, interactive=True, label="Pretrained Pipelines") text_button = gr.Button("Get new text") text_input = gr.Textbox( value=DEFAULT_TEXT, interactive=True, label="Input Text") button = gr.Button("Generate") with gr.Tabs(): with gr.TabItem("Dependency"): col_punct = gr.Checkbox(label="Collapse Punctuation", value=True) col_phrase = gr.Checkbox(label="Collapse Phrases", value=True) compact = gr.Checkbox(label="Compact", value=False) depen_output = gr.HTML() dep_button = gr.Button("Generate this tab") with gr.TabItem("Entity"): entity_input = gr.CheckboxGroup(DEFAULT_ENTS, value=DEFAULT_ENTS) entity_output = gr.HTML() ent_button = gr.Button("Generate this tab") with gr.TabItem("Tokens"): with gr.Column(): tok_input = gr.CheckboxGroup( DEFAULT_TOK_ATTR, value=DEFAULT_TOK_ATTR) tok_output = gr.Dataframe( headers=DEFAULT_TOK_ATTR, overflow_row_behaviour="paginate") tok_button = gr.Button("Generate this tab") with gr.TabItem("Similarity"): with gr.Row(): sim_text1 = gr.Textbox( value="Apple", label="Chosen", interactive=True,) sim_text2 = gr.Textbox( value="U.K. startup", label="Chosen", interactive=True,) sim_output = gr.Textbox(label="Similarity Score") sim_random_button = gr.Button("Generate random words") sim_button = gr.Button("Generate inputs") with gr.TabItem("Spans"): with gr.Column(): with gr.Row(): span1 = gr.Textbox( label="Span 1", value="U.K. startup", placeholder="Input a part of the sentence") label1 = gr.Textbox(value="ORG", label="Label for Span 1") with gr.Row(): span2 = gr.Textbox( label="Span 2", value="U.K.", placeholder="Input another part of the sentence") label2 = gr.Textbox(value="GPE", label="Label for Span 2") span_output = gr.HTML() gr.Markdown(value="\n\n\n\n") gr.Markdown(value="\n\n\n\n") span_button = gr.Button("Generate this tab") text_button.click(get_text, inputs=[model_input], outputs=text_input) button.click(dependency, inputs=[ text_input, col_punct, col_phrase, compact, model_input], outputs=depen_output) button.click( entity, inputs=[text_input, entity_input, model_input], outputs=entity_output) button.click( token, inputs=[text_input, tok_input, model_input], outputs=tok_output) button.click(vectors, inputs=[sim_text1, sim_text2, model_input], outputs=sim_output) button.click( span, inputs=[text_input, span1, span2, label1, label2, model_input], outputs=span_output) dep_button.click(dependency, inputs=[ text_input, col_punct, col_phrase, compact, model_input], outputs=depen_output) ent_button.click( entity, inputs=[text_input, entity_input, model_input], outputs=entity_output) tok_button.click( token, inputs=[text_input, tok_input, model_input], outputs=[tok_output]) sim_button.click(vectors, inputs=[ sim_text1, sim_text2, model_input], outputs=sim_output) span_button.click( span, inputs=[text_input, span1, span2, label1, label2, model_input], outputs=span_output) sim_random_button.click(random_vectors, inputs=[text_input, model_input], outputs=[ sim_output, sim_text1, sim_text2]) demo.launch()