import gradio as gr import os import cv2 import numpy as np from moviepy.editor import * from diffusers import StableDiffusionInstructPix2PixPipeline import torch from PIL import Image, ImageOps import time import psutil import math import random pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix", torch_dtype=torch.float16, safety_checker=None) device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶" if torch.cuda.is_available(): pipe = pipe.to("cuda") def pix2pix( input_image: Image.Image, instruction: str, steps: int, seed: int, text_cfg_scale: float, image_cfg_scale: float, ): width, height = input_image.size factor = 512 / max(width, height) factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height) width = int((width * factor) // 64) * 64 height = int((height * factor) // 64) * 64 input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS) if instruction == "": return [input_image, seed] generator = torch.manual_seed(seed) edited_image = pipe( instruction, image=input_image, guidance_scale=text_cfg_scale, image_guidance_scale=image_cfg_scale, num_inference_steps=steps, generator=generator, ).images[0] print(f"EDITED: {edited_image}") return edited_image def get_frames(video_in): frames = [] #resize the video clip = VideoFileClip(video_in) #check fps if clip.fps > 30: print("vide rate is over 30, resetting to 30") clip_resized = clip.resize(height=512) clip_resized.write_videofile("video_resized.mp4", fps=30) else: print("video rate is OK") clip_resized = clip.resize(height=512) clip_resized.write_videofile("video_resized.mp4", fps=clip.fps) print("video resized to 512 height") # Opens the Video file with CV2 cap= cv2.VideoCapture("video_resized.mp4") fps = cap.get(cv2.CAP_PROP_FPS) print("video fps: " + str(fps)) i=0 while(cap.isOpened()): ret, frame = cap.read() if ret == False: break cv2.imwrite('kang'+str(i)+'.jpg',frame) frames.append('kang'+str(i)+'.jpg') i+=1 cap.release() cv2.destroyAllWindows() print("broke the video into frames") return frames, fps def create_video(frames, fps): print("building video result") clip = ImageSequenceClip(frames, fps=fps) clip.write_videofile("movie.mp4", fps=fps) return 'movie.mp4' def infer(prompt,video_in, seed_in, trim_value): print(prompt) break_vid = get_frames(video_in) frames_list= break_vid[0] fps = break_vid[1] n_frame = int(trim_value*fps) if n_frame >= len(frames_list): print("video is shorter than the cut value") n_frame = len(frames_list) result_frames = [] print("set stop frames to: " + str(n_frame)) for i in frames_list[0:int(n_frame)]: pil_i = Image.open(i).convert("RGB") pix2pix_img = pix2pix(pil_i, prompt, 50, seed_in, 7.5, 1.5) #print(pix2pix_img) #image = Image.open(pix2pix_img) #rgb_im = image.convert("RGB") # exporting the image pix2pix_img.save(f"result_img-{i}.jpg") result_frames.append(f"result_img-{i}.jpg") print("frame " + i + "/" + str(n_frame) + ": done;") final_vid = create_video(result_frames, fps) print("finished !") return final_vid title = """ <div style="text-align: center; max-width: 700px; margin: 0 auto;"> <div style=" display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem; " > <h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;"> Pix2Pix Video </h1> </div> <p style="margin-bottom: 10px; font-size: 94%"> Apply Instruct Pix2Pix Diffusion to a video </p> </div> """ article = """ <div class="footer"> <p> Examples by <a href="https://twitter.com/CitizenPlain" target="_blank">Nathan Shipley</a> • Follow <a href="https://twitter.com/fffiloni" target="_blank">Sylvain Filoni</a> for future updates 🤗 </p> </div> <div id="may-like-container" style="display: flex;justify-content: center;flex-direction: column;align-items: center;margin-bottom: 30px;"> <p>You may also like: </p> <div id="may-like-content" style="display:flex;flex-wrap: wrap;align-items:center;height:20px;"> <svg height="20" width="162" style="margin-left:4px;margin-bottom: 6px;"> <a href="https://huggingface.co/spaces/timbrooks/instruct-pix2pix" target="_blank"> <image href="https://img.shields.io/badge/🤗 Spaces-Instruct_Pix2Pix-blue" src="https://img.shields.io/badge/🤗 Spaces-Instruct_Pix2Pix-blue.png" height="20"/> </a> </svg> </div> </div> """ with gr.Blocks(css='style.css') as demo: with gr.Column(elem_id="col-container"): gr.HTML(title) with gr.Row(): with gr.Column(): video_inp = gr.Video(label="Video source", sources=["upload"], elem_id="input-vid") prompt = gr.Textbox(label="Prompt", placeholder="enter prompt", show_label=False, elem_id="prompt-in") with gr.Row(): seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=123456) trim_in = gr.Slider(label="Cut video at (s)", minimum=1, maximum=5, step=1, value=1) with gr.Column(): video_out = gr.Video(label="Pix2pix video result", elem_id="video-output") gr.HTML(""" <a style="display:inline-block" href="https://huggingface.co/spaces/fffiloni/Pix2Pix-Video?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a> work with longer videos / skip the queue: """, elem_id="duplicate-container") submit_btn = gr.Button("Generate Pix2Pix video") inputs = [prompt,video_inp,seed_inp, trim_in] outputs = [video_out] #ex = gr.Examples( # [ # ["Make it a marble sculpture", "./examples/pexels-jill-burrow-7665249_512x512.mp4", 422112651, 4], # ["Make it molten lava", "./examples/Ocean_Pexels_ 8953474_512x512.mp4", 43571876, 4] # ], # inputs=inputs, # outputs=outputs, # fn=infer, # cache_examples=True, #) gr.HTML(article) submit_btn.click(infer, inputs, outputs, show_api=False) demo.queue(max_size=12).launch(show_api=False)