import gradio as gr import tensorflow as tf from tensorflow.keras.models import load_model from tensorflow.keras.applications.mobilenet_v2 import preprocess_input from tensorflow.keras.preprocessing.image import img_to_array import numpy as np from PIL import Image import os # Load your model and tokenizer labels = { 'class': ['amphibia', 'aves', 'invertebrates', 'lacertilia', 'mammalia', 'serpentes', 'testudines'], 'serpentes': ["Butler's Gartersnake", "Dekay's Brownsnake", 'Eastern Gartersnake', 'Eastern Hog-nosed snake', 'Eastern Massasauga', 'Eastern Milksnake', 'Eastern Racer Snake', 'Eastern Ribbonsnake', 'Gray Ratsnake', "Kirtland's Snake", 'Northern Watersnake', 'Plains Gartersnake', 'Red-bellied Snake', 'Smooth Greensnake'], 'mammalia': ['American Mink', 'Brown Rat', 'Eastern Chipmunk', 'Eastern Cottontail', 'Long-tailed Weasel', 'Masked Shrew', 'Meadow Jumping Mouse', 'Meadow Vole', 'N. Short-tailed Shrew', 'Raccoon', 'Star-nosed mole', 'Striped Skunk', 'Virginia Opossum', 'White-footed Mouse', 'Woodchuck', 'Woodland Jumping Mouse'], 'aves': ['Common Yellowthroat', 'Gray Catbird', 'Indigo Bunting', 'Northern House Wren', 'Song Sparrow', 'Sora'], 'amphibia': ['American Bullfrog', 'American Toad', 'Green Frog', 'Northern Leopard Frog'] } # Preprocess the image def preprocess_image(image): img = image.resize((224, 224)) # MobileNet requires 224x224 input size img_array = img_to_array(img) img_array = np.expand_dims(img_array, axis=0) # Add batch dimension img_array = preprocess_input(img_array) # Preprocess the image return img_array, image # Return both the preprocessed array and resized image for display # Function to perform inference def predict(img): img_array, resized_img = preprocess_image(img) model = load_model(r"inceptionv3_classs.h5") preds = model.predict(img_array) # Get the model predictions decoded_preds = np.argmax(preds) # Return the prediction and the resized image for display return resized_img, labels['class'][decoded_preds] # Create the Gradio interface iface = gr.Interface( fn=predict, # The prediction function inputs=gr.inputs.Image(type="pil"), # Input as a PIL image outputs=[gr.outputs.Image(type="pil"), gr.outputs.Textbox()], # Output the resized image and prediction title="Animal Classifier" ) # Launch the Gradio interface iface.launch()