# Get API token from environment variable #api_token = os.getenv("HF_TOKEN").strip() import gradio as gr from transformers import AutoModel, AutoTokenizer import torch # Load the model and tokenizer model_name = "ContactDoctor/Bio-Medical-MultiModal-Llama-3-8B-V1" model = AutoModel.from_pretrained(model_name, trust_remote_code=True, device_map="auto", torch_dtype=torch.float16) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) def process_query(image, question): inputs = {"question": question} if image: inputs["image"] = image # Process the inputs and generate a response response = model.chat(image=inputs.get("image"), msgs=[{"role": "user", "content": question}], tokenizer=tokenizer) return response iface = gr.Interface( fn=process_query, inputs=[gr.Image(label="Upload Medical Image"), gr.Textbox(label="Question")], outputs="text", title="Medical Multimodal Assistant", description="Upload a medical image and ask your question." ) iface.launch()