Spaces:
Runtime error
Runtime error
Commit
Β·
6afb035
1
Parent(s):
cd9c33a
spacesgpu
Browse files
app.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
<<<<<<< HEAD
|
| 2 |
import gradio as gr
|
| 3 |
import spaces
|
| 4 |
from gradio_litmodel3d import LitModel3D
|
|
@@ -274,18 +273,21 @@ with gr.Blocks() as demo:
|
|
| 274 |
|
| 275 |
# Initialize both pipelines
|
| 276 |
if __name__ == "__main__":
|
| 277 |
-
from diffusers import FluxTransformer2DModel, FluxPipeline
|
|
|
|
|
|
|
| 278 |
# Initialize Flux pipeline
|
| 279 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 280 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
| 281 |
|
| 282 |
-
#quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
| 283 |
-
hf_token = ""
|
| 284 |
dtype = torch.bfloat16
|
| 285 |
file_url = "https://huggingface.co/gokaygokay/flux-game/blob/main/gokaygokay_00001_.safetensors"
|
| 286 |
single_file_base_model = "camenduru/FLUX.1-dev-diffusers"
|
| 287 |
-
|
| 288 |
-
|
|
|
|
|
|
|
|
|
|
| 289 |
|
| 290 |
# Initialize Trellis pipeline
|
| 291 |
trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
|
@@ -295,304 +297,4 @@ if __name__ == "__main__":
|
|
| 295 |
except:
|
| 296 |
pass
|
| 297 |
|
| 298 |
-
=======
|
| 299 |
-
import gradio as gr
|
| 300 |
-
import spaces
|
| 301 |
-
from gradio_litmodel3d import LitModel3D
|
| 302 |
-
import os
|
| 303 |
-
import shutil
|
| 304 |
-
import random
|
| 305 |
-
import uuid
|
| 306 |
-
from datetime import datetime
|
| 307 |
-
from diffusers import DiffusionPipeline
|
| 308 |
-
|
| 309 |
-
os.environ['SPCONV_ALGO'] = 'native'
|
| 310 |
-
from typing import *
|
| 311 |
-
import torch
|
| 312 |
-
import numpy as np
|
| 313 |
-
import imageio
|
| 314 |
-
from easydict import EasyDict as edict
|
| 315 |
-
from PIL import Image
|
| 316 |
-
from trellis.pipelines import TrellisImageTo3DPipeline
|
| 317 |
-
from trellis.representations import Gaussian, MeshExtractResult
|
| 318 |
-
from trellis.utils import render_utils, postprocessing_utils
|
| 319 |
-
|
| 320 |
-
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
| 321 |
-
# Constants
|
| 322 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 323 |
-
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
| 324 |
-
os.makedirs(TMP_DIR, exist_ok=True)
|
| 325 |
-
|
| 326 |
-
# Create permanent storage directory for Flux generated images
|
| 327 |
-
SAVE_DIR = "saved_images"
|
| 328 |
-
if not os.path.exists(SAVE_DIR):
|
| 329 |
-
os.makedirs(SAVE_DIR, exist_ok=True)
|
| 330 |
-
|
| 331 |
-
def start_session(req: gr.Request):
|
| 332 |
-
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 333 |
-
os.makedirs(user_dir, exist_ok=True)
|
| 334 |
-
|
| 335 |
-
def end_session(req: gr.Request):
|
| 336 |
-
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 337 |
-
shutil.rmtree(user_dir)
|
| 338 |
-
|
| 339 |
-
def preprocess_image(image: Image.Image) -> Image.Image:
|
| 340 |
-
processed_image = trellis_pipeline.preprocess_image(image)
|
| 341 |
-
return processed_image
|
| 342 |
-
|
| 343 |
-
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
| 344 |
-
return {
|
| 345 |
-
'gaussian': {
|
| 346 |
-
**gs.init_params,
|
| 347 |
-
'_xyz': gs._xyz.cpu().numpy(),
|
| 348 |
-
'_features_dc': gs._features_dc.cpu().numpy(),
|
| 349 |
-
'_scaling': gs._scaling.cpu().numpy(),
|
| 350 |
-
'_rotation': gs._rotation.cpu().numpy(),
|
| 351 |
-
'_opacity': gs._opacity.cpu().numpy(),
|
| 352 |
-
},
|
| 353 |
-
'mesh': {
|
| 354 |
-
'vertices': mesh.vertices.cpu().numpy(),
|
| 355 |
-
'faces': mesh.faces.cpu().numpy(),
|
| 356 |
-
},
|
| 357 |
-
}
|
| 358 |
-
|
| 359 |
-
def unpack_state(state: dict) -> Tuple[Gaussian, edict]:
|
| 360 |
-
gs = Gaussian(
|
| 361 |
-
aabb=state['gaussian']['aabb'],
|
| 362 |
-
sh_degree=state['gaussian']['sh_degree'],
|
| 363 |
-
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
|
| 364 |
-
scaling_bias=state['gaussian']['scaling_bias'],
|
| 365 |
-
opacity_bias=state['gaussian']['opacity_bias'],
|
| 366 |
-
scaling_activation=state['gaussian']['scaling_activation'],
|
| 367 |
-
)
|
| 368 |
-
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
|
| 369 |
-
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
|
| 370 |
-
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
|
| 371 |
-
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
|
| 372 |
-
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
|
| 373 |
-
|
| 374 |
-
mesh = edict(
|
| 375 |
-
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
|
| 376 |
-
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
|
| 377 |
-
)
|
| 378 |
-
|
| 379 |
-
return gs, mesh
|
| 380 |
-
|
| 381 |
-
def get_seed(randomize_seed: bool, seed: int) -> int:
|
| 382 |
-
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
| 383 |
-
|
| 384 |
-
@spaces.GPU
|
| 385 |
-
def generate_flux_image(
|
| 386 |
-
prompt: str,
|
| 387 |
-
seed: int,
|
| 388 |
-
randomize_seed: bool,
|
| 389 |
-
width: int,
|
| 390 |
-
height: int,
|
| 391 |
-
guidance_scale: float,
|
| 392 |
-
num_inference_steps: int,
|
| 393 |
-
lora_scale: float,
|
| 394 |
-
progress: gr.Progress = gr.Progress(track_tqdm=True),
|
| 395 |
-
) -> Image.Image:
|
| 396 |
-
"""Generate image using Flux pipeline"""
|
| 397 |
-
if randomize_seed:
|
| 398 |
-
seed = random.randint(0, MAX_SEED)
|
| 399 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
| 400 |
-
|
| 401 |
-
image = flux_pipeline(
|
| 402 |
-
prompt=prompt,
|
| 403 |
-
guidance_scale=guidance_scale,
|
| 404 |
-
num_inference_steps=num_inference_steps,
|
| 405 |
-
width=width,
|
| 406 |
-
height=height,
|
| 407 |
-
generator=generator,
|
| 408 |
-
joint_attention_kwargs={"scale": lora_scale},
|
| 409 |
-
).images[0]
|
| 410 |
-
|
| 411 |
-
# Save the generated image
|
| 412 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 413 |
-
unique_id = str(uuid.uuid4())[:8]
|
| 414 |
-
filename = f"{timestamp}_{unique_id}.png"
|
| 415 |
-
filepath = os.path.join(SAVE_DIR, filename)
|
| 416 |
-
image.save(filepath)
|
| 417 |
-
|
| 418 |
-
return image
|
| 419 |
-
|
| 420 |
-
@spaces.GPU
|
| 421 |
-
def image_to_3d(
|
| 422 |
-
image: Image.Image,
|
| 423 |
-
seed: int,
|
| 424 |
-
ss_guidance_strength: float,
|
| 425 |
-
ss_sampling_steps: int,
|
| 426 |
-
slat_guidance_strength: float,
|
| 427 |
-
slat_sampling_steps: int,
|
| 428 |
-
req: gr.Request,
|
| 429 |
-
) -> Tuple[dict, str]:
|
| 430 |
-
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 431 |
-
outputs = trellis_pipeline.run(
|
| 432 |
-
image,
|
| 433 |
-
seed=seed,
|
| 434 |
-
formats=["gaussian", "mesh"],
|
| 435 |
-
preprocess_image=False,
|
| 436 |
-
sparse_structure_sampler_params={
|
| 437 |
-
"steps": ss_sampling_steps,
|
| 438 |
-
"cfg_strength": ss_guidance_strength,
|
| 439 |
-
},
|
| 440 |
-
slat_sampler_params={
|
| 441 |
-
"steps": slat_sampling_steps,
|
| 442 |
-
"cfg_strength": slat_guidance_strength,
|
| 443 |
-
},
|
| 444 |
-
)
|
| 445 |
-
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
| 446 |
-
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
| 447 |
-
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
| 448 |
-
video_path = os.path.join(user_dir, 'sample.mp4')
|
| 449 |
-
imageio.mimsave(video_path, video, fps=15)
|
| 450 |
-
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
| 451 |
-
torch.cuda.empty_cache()
|
| 452 |
-
return state, video_path
|
| 453 |
-
|
| 454 |
-
@spaces.GPU(duration=90)
|
| 455 |
-
def extract_glb(
|
| 456 |
-
state: dict,
|
| 457 |
-
mesh_simplify: float,
|
| 458 |
-
texture_size: int,
|
| 459 |
-
req: gr.Request,
|
| 460 |
-
) -> Tuple[str, str]:
|
| 461 |
-
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 462 |
-
gs, mesh = unpack_state(state)
|
| 463 |
-
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
| 464 |
-
glb_path = os.path.join(user_dir, 'sample.glb')
|
| 465 |
-
glb.export(glb_path)
|
| 466 |
-
torch.cuda.empty_cache()
|
| 467 |
-
return glb_path, glb_path
|
| 468 |
-
|
| 469 |
-
@spaces.GPU
|
| 470 |
-
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
| 471 |
-
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 472 |
-
gs, _ = unpack_state(state)
|
| 473 |
-
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
| 474 |
-
gs.save_ply(gaussian_path)
|
| 475 |
-
torch.cuda.empty_cache()
|
| 476 |
-
return gaussian_path, gaussian_path
|
| 477 |
-
|
| 478 |
-
# Gradio Interface
|
| 479 |
-
with gr.Blocks() as demo:
|
| 480 |
-
gr.Markdown("""
|
| 481 |
-
## Game Asset Generation to 3D with FLUX and TRELLIS
|
| 482 |
-
* Enter a prompt to generate a game asset image, then convert it to 3D
|
| 483 |
-
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
| 484 |
-
""")
|
| 485 |
-
|
| 486 |
-
with gr.Row():
|
| 487 |
-
with gr.Column():
|
| 488 |
-
# Flux image generation inputs
|
| 489 |
-
prompt = gr.Text(label="Prompt", placeholder="Enter your game asset description")
|
| 490 |
-
with gr.Accordion("Generation Settings", open=False):
|
| 491 |
-
seed = gr.Slider(0, MAX_SEED, label="Seed", value=42, step=1)
|
| 492 |
-
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
| 493 |
-
with gr.Row():
|
| 494 |
-
width = gr.Slider(256, 1024, label="Width", value=768, step=32)
|
| 495 |
-
height = gr.Slider(256, 1024, label="Height", value=768, step=32)
|
| 496 |
-
with gr.Row():
|
| 497 |
-
guidance_scale = gr.Slider(0.0, 10.0, label="Guidance Scale", value=3.5, step=0.1)
|
| 498 |
-
num_inference_steps = gr.Slider(1, 50, label="Steps", value=30, step=1)
|
| 499 |
-
lora_scale = gr.Slider(0.0, 1.0, label="LoRA Scale", value=1.0, step=0.1)
|
| 500 |
-
|
| 501 |
-
with gr.Accordion("3D Generation Settings", open=False):
|
| 502 |
-
gr.Markdown("Stage 1: Sparse Structure Generation")
|
| 503 |
-
with gr.Row():
|
| 504 |
-
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
|
| 505 |
-
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
| 506 |
-
gr.Markdown("Stage 2: Structured Latent Generation")
|
| 507 |
-
with gr.Row():
|
| 508 |
-
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
| 509 |
-
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
| 510 |
-
|
| 511 |
-
generate_btn = gr.Button("Generate")
|
| 512 |
-
|
| 513 |
-
with gr.Accordion("GLB Extraction Settings", open=False):
|
| 514 |
-
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
| 515 |
-
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
| 516 |
-
|
| 517 |
-
with gr.Row():
|
| 518 |
-
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
| 519 |
-
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
| 520 |
-
|
| 521 |
-
with gr.Column():
|
| 522 |
-
generated_image = gr.Image(label="Generated Asset", type="pil")
|
| 523 |
-
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True)
|
| 524 |
-
model_output = LitModel3D(label="Extracted GLB/Gaussian")
|
| 525 |
-
|
| 526 |
-
with gr.Row():
|
| 527 |
-
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
| 528 |
-
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
| 529 |
-
|
| 530 |
-
output_buf = gr.State()
|
| 531 |
-
|
| 532 |
-
# Event handlers
|
| 533 |
-
demo.load(start_session)
|
| 534 |
-
demo.unload(end_session)
|
| 535 |
-
|
| 536 |
-
generate_btn.click(
|
| 537 |
-
generate_flux_image,
|
| 538 |
-
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, lora_scale],
|
| 539 |
-
outputs=[generated_image],
|
| 540 |
-
).then(
|
| 541 |
-
image_to_3d,
|
| 542 |
-
inputs=[generated_image, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
| 543 |
-
outputs=[output_buf, video_output],
|
| 544 |
-
).then(
|
| 545 |
-
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
| 546 |
-
outputs=[extract_glb_btn, extract_gs_btn],
|
| 547 |
-
)
|
| 548 |
-
|
| 549 |
-
extract_glb_btn.click(
|
| 550 |
-
extract_glb,
|
| 551 |
-
inputs=[output_buf, mesh_simplify, texture_size],
|
| 552 |
-
outputs=[model_output, download_glb],
|
| 553 |
-
).then(
|
| 554 |
-
lambda: gr.Button(interactive=True),
|
| 555 |
-
outputs=[download_glb],
|
| 556 |
-
)
|
| 557 |
-
|
| 558 |
-
extract_gs_btn.click(
|
| 559 |
-
extract_gaussian,
|
| 560 |
-
inputs=[output_buf],
|
| 561 |
-
outputs=[model_output, download_gs],
|
| 562 |
-
).then(
|
| 563 |
-
lambda: gr.Button(interactive=True),
|
| 564 |
-
outputs=[download_gs],
|
| 565 |
-
)
|
| 566 |
-
|
| 567 |
-
model_output.clear(
|
| 568 |
-
lambda: gr.Button(interactive=False),
|
| 569 |
-
outputs=[download_glb],
|
| 570 |
-
)
|
| 571 |
-
|
| 572 |
-
# Initialize both pipelines
|
| 573 |
-
if __name__ == "__main__":
|
| 574 |
-
from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig
|
| 575 |
-
from transformers import BitsAndBytesConfig as BitsAndBytesConfigTF
|
| 576 |
-
# Initialize Flux pipeline
|
| 577 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 578 |
-
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
| 579 |
-
|
| 580 |
-
dtype = torch.bfloat16
|
| 581 |
-
file_url = "https://huggingface.co/gokaygokay/flux-game/blob/main/gokaygokay_00001_.safetensors"
|
| 582 |
-
single_file_base_model = "camenduru/FLUX.1-dev-diffusers"
|
| 583 |
-
quantization_config_tf = BitsAndBytesConfigTF(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16)
|
| 584 |
-
text_encoder_2 = T5EncoderModel.from_pretrained(single_file_base_model, subfolder="text_encoder_2", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config_tf, token=huggingface_token)
|
| 585 |
-
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16)
|
| 586 |
-
transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config, token=huggingface_token)
|
| 587 |
-
flux_pipeline = FluxPipeline.from_pretrained(single_file_base_model, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype, quantization_config=quantization_config, token=huggingface_token)
|
| 588 |
-
|
| 589 |
-
# Initialize Trellis pipeline
|
| 590 |
-
trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
| 591 |
-
trellis_pipeline.cuda()
|
| 592 |
-
try:
|
| 593 |
-
trellis_pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
|
| 594 |
-
except:
|
| 595 |
-
pass
|
| 596 |
-
|
| 597 |
-
>>>>>>> d74f4adbedc376ca385ce749e827d3c18535c4f0
|
| 598 |
demo.launch()
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
from gradio_litmodel3d import LitModel3D
|
|
|
|
| 273 |
|
| 274 |
# Initialize both pipelines
|
| 275 |
if __name__ == "__main__":
|
| 276 |
+
from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig, BitsAndBytesConfigTF
|
| 277 |
+
from transformers import T5EncoderModel
|
| 278 |
+
|
| 279 |
# Initialize Flux pipeline
|
| 280 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 281 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
| 282 |
|
|
|
|
|
|
|
| 283 |
dtype = torch.bfloat16
|
| 284 |
file_url = "https://huggingface.co/gokaygokay/flux-game/blob/main/gokaygokay_00001_.safetensors"
|
| 285 |
single_file_base_model = "camenduru/FLUX.1-dev-diffusers"
|
| 286 |
+
quantization_config_tf = BitsAndBytesConfigTF(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16)
|
| 287 |
+
text_encoder_2 = T5EncoderModel.from_pretrained(single_file_base_model, subfolder="text_encoder_2", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config_tf, token=huggingface_token)
|
| 288 |
+
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16)
|
| 289 |
+
transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config, token=huggingface_token)
|
| 290 |
+
flux_pipeline = FluxPipeline.from_pretrained(single_file_base_model, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype, quantization_config=quantization_config, token=huggingface_token)
|
| 291 |
|
| 292 |
# Initialize Trellis pipeline
|
| 293 |
trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
|
|
|
| 297 |
except:
|
| 298 |
pass
|
| 299 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
demo.launch()
|