from huggingface_hub import InferenceClient import gradio as gr client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1") val_image = gr.Image("/file=val_speaking_transparent.gif") PLACEHOLDER = f"""

Hi Jennifer, welcome to Treasury and Finance

Ask me anything about working at here...

You might find these links of interest:

Read about our enterprise agreement Read guidance to making accessible content Here's the Victorian Government directory
. """ DESCRIPTION = """ You might find these links of interest - [Read about our enterprise agreement](https://www.dtf.vic.gov.au/funds-programs-and-policies/victorian-public-service-enterprise-agreement-2020) - [Here's the Victorian Government directory](https://www.vic.gov.au/victorian-government-directory) - [Read guidance to making accessible content](https://www.vic.gov.au/make-content-accessible) """ TITLE = "Hi I'm Val the Voyager, welcome onboard!" def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate( prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(prompt, history) stream = client.text_generation( formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False, ) output = "" for response in stream: output += response.token.text yield output return output additional_inputs = [ gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=1048, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ), ] gr.ChatInterface( fn=generate, chatbot=gr.Chatbot( show_share_button=False, show_copy_button=True, likeable=True, layout="bubble", placeholder=PLACEHOLDER, # label=DESCRIPTION, # show_label=True, ), additional_inputs=additional_inputs, examples=[ ["What should I do on my first day?"], ["Ask me what an acronym stands for"], ["How can I check my leave allowance?"], ["Where can I find a floor map of 1 Macarthur?"], ["How can I find out about DTF's Disability network?"], ], cache_examples=False, title=TITLE, # description=DESCRIPTION, ).launch(show_api=False)