File size: 29,515 Bytes
c9117ba 66ac827 c9117ba 3efb4a6 c9117ba 3efb4a6 c9117ba 3efb4a6 c9117ba 3efb4a6 c9117ba 3efb4a6 c9117ba 3efb4a6 c9117ba 3efb4a6 c9117ba 3efb4a6 c9117ba 3efb4a6 c9117ba 3efb4a6 c9117ba 3efb4a6 c9117ba 3efb4a6 c9117ba 3efb4a6 c9117ba 3efb4a6 c9117ba 3efb4a6 c9117ba 3efb4a6 c9117ba 3efb4a6 c9117ba 3efb4a6 c9117ba 3efb4a6 c9117ba 3efb4a6 c9117ba 3efb4a6 c9117ba 66ac827 c9117ba 66ac827 c9117ba 66ac827 c9117ba 66ac827 c9117ba 66ac827 c9117ba 66ac827 c9117ba 3efb4a6 c9117ba 3efb4a6 c9117ba 66ac827 c9117ba 66ac827 c9117ba 66ac827 c9117ba 66ac827 c9117ba 66ac827 c9117ba 66ac827 c9117ba 66ac827 c9117ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 |
import gradio as gr
from src.services.util import (
REPORT_STATUS_OPTIONS, CONFIDENTIALITY_LEVELS, DATA_USAGE_OPTIONS, DATA_FORMAT,
DATA_TYPES, DATA_SOURCE,
ACCURACY_LEVELS, INFRA_TYPES,
POWER_SUPPLIER_TYPES, POWER_SOURCES, QUALITY_LEVELS
)
def create_dynamic_section(section_name, fields_config, initial_count=1, layout="row"):
"""
Creates a dynamic section in a Gradio interface where users can add or remove rows of input fields.
Args:
section_name (str): The name of the section (e.g., "Algorithms", "Components").
fields_config (list): A list of dictionaries defining the configuration for each field in the section.
Each dictionary should include:
- "type": The Gradio component type (e.g., gr.Textbox, gr.Number).
- "label": The label for the field.
- "info": Additional information or tooltip for the field.
- "value" (optional): The default value for the field.
- "kwargs" (optional): Additional keyword arguments for the component.
- "elem_classes" (optional): CSS classes for styling the field.
initial_count (int): The initial number of rows to render in the section.
layout (str): The layout of the fields in each row ("row" or "column").
Returns:
tuple: A tuple containing:
- count_state: A Gradio state object tracking the number of rows.
- field_states: A list of Gradio state objects, one for each field, to store the values of the fields.
- add_btn: The "Add" button component for adding new rows.
"""
# State management
# Tracks the number of rows in the section.
count_state = gr.State(value=initial_count+1)
# Stores the values for each field across all rows.
field_states = [gr.State([]) for _ in fields_config]
# A list to store all dynamically generated components.
all_components = []
def update_fields(*states_and_values):
"""
Updates the state of the fields when a value changes.
Args:
*states_and_values: A combination of the current states and the new values for the fields.
Returns:
tuple: Updated states for all fields.
"""
# Split states and current values
# Extract the current states for each field.
states = list(states_and_values[:len(fields_config)])
# Extract the new values for the fields.
current_values = states_and_values[len(fields_config):-1]
index = states_and_values[-1] # The index of the row being updated.
# Update each field's state
for field_idx, (state, value) in enumerate(zip(states, current_values)):
# Ensure the state list is long enough to accommodate the current index.
while len(state) <= index:
state.append("")
# Update the value at the specified index.
state[index] = value if value is not None else ""
return tuple(states)
@gr.render(inputs=count_state)
def render_dynamic_section(count):
"""
Renders the dynamic section with the current number of rows and their states.
Args:
count (int): The number of rows to render.
Returns:
list: A list of dynamically generated components for the section.
"""
nonlocal all_components
all_components = [] # Reset the list of components for re-rendering.
for i in range(count):
# Create a row or column layout for the current row of fields.
with (gr.Row() if layout == "row" else gr.Column()):
row_components = [] # Components for the current row.
field_refs = [] # References to the current row's components.
for field_idx, config in enumerate(fields_config):
# Create a component for the field using its configuration.
component = config["type"](
label=f"{config['label']} ({section_name}{i + 1})",
info=config.get("info", ""),
value=config.get("value", ""),
**config.get("kwargs", {}),
elem_classes=config.get("elem_classes", "")
)
row_components.append(component)
field_refs.append(component)
# Create a change event to update the field states when the value changes.
component.change(
fn=update_fields,
inputs=[*field_states, *field_refs, gr.State(i)],
outputs=field_states
)
# Add a "Remove" button to delete the current row.
remove_btn = gr.Button("❌", variant="secondary")
remove_btn.click(
lambda x, idx=i, fs=field_states: (
max(0, x - 1), # Decrease the count of rows.
# Remove the row's values.
*[fs[i].value[:idx] + fs[i].value[idx + 1:] for i in range(len(fs))]
),
inputs=count_state,
outputs=[count_state, *field_states]
)
row_components.append(remove_btn)
# Add the row's components to the list of all components.
all_components.extend(row_components)
return all_components
# Initialize the section with the initial count of rows.
render_dynamic_section(count=initial_count)
# Create an "Add" button to add new rows to the section.
add_btn = gr.Button(f"Add {section_name}")
add_btn.click(lambda x: x + 1, count_state, count_state)
return (count_state, *field_states, add_btn)
def create_header_tab():
"""Create the header tab components."""
with gr.Tab("Header"):
licensing = gr.Textbox(
label="Licensing", info="(the type of licensing applicable for the sharing of the report)")
formatVersion = gr.Textbox(
label="Format Version", info="(the version of the specification of this set of schemas defining the report's fields)")
formatVersionSpecificationUri = gr.Textbox(
label="Format Version Specification URI", info="(the URI of the present specification of this set of schemas)")
reportId = gr.Textbox(
label="Report ID", info="(the unique identifier of this report, preferably as a uuid4 string)")
reportDatetime = gr.Textbox(
label="Report Datetime", info="Required field<br>(the publishing date of this report in format YYYY-MM-DD HH:MM:SS)", elem_classes="mandatory_field")
reportStatus = gr.Dropdown(value=None,
label="Report Status",
choices=REPORT_STATUS_OPTIONS,
info="(the status of this report)"
)
with gr.Accordion("Publisher"):
publisher_name = gr.Textbox(
label="Name", info="(name of the organization)")
publisher_division = gr.Textbox(
label="Division", info="(name of the publishing department within the organization)")
publisher_projectName = gr.Textbox(
label="Project Name", info="(name of the publishing project within the organization)")
publisher_confidentialityLevel = gr.Dropdown(value=None,
label="Confidentiality Level",
choices=CONFIDENTIALITY_LEVELS,
info="Required field<br>(the confidentiality of the report)",
elem_classes="mandatory_field"
)
publisher_publicKey = gr.Textbox(
label="Public Key", info="(the cryptographic public key to check the identity of the publishing organization)")
return [
licensing, formatVersion, formatVersionSpecificationUri, reportId,
reportDatetime, reportStatus, publisher_name, publisher_division,
publisher_projectName, publisher_confidentialityLevel, publisher_publicKey
]
def create_task_tab():
"""Create the task tab components."""
with gr.Tab("Task", elem_id="mandatory_part"):
taskStage = gr.Textbox(
label="Task Stage", info="Required field<br>(stage of the task, example: datacreation, preprocessing, training, finetuning, inference, retraining..., add a + between stages if several but we do recommand to measure each step independantly)", elem_classes="mandatory_field")
taskFamily = gr.Textbox(
label="Task Family", info="Required field<br>(the family of task you are running, e.g. text classification, image generation, speech recognition, robotics navigation...)", elem_classes="mandatory_field")
nbRequest = gr.Number(
label="Number of Requests", info="(if inference stage, the number of requests the measure corresponds to, 0 or empty if you're not measuring the inference stage)",
value=lambda: None, minimum=0)
with gr.Accordion("Algorithms", elem_id="mandatory_part"):
_, trainingType, algorithmType, algorithmName, algorithmUri, foundationModelName, foundationModelUri, parametersNumber, framework, frameworkVersion, classPath, layersNumber, epochsNumber, optimizer, quantization, add_algorithm_btn = create_dynamic_section(
section_name="algorithm",
fields_config=[
{
"type": gr.Textbox,
"label": "Type of training",
"info": "(if applicable, type of training (if the stage corresponds to a training) : supervisedLearning, unsupervisedLearning, semiSupervisedLearning, reinforcementLearning, transferLearning ...)",
},
{
"type": gr.Textbox,
"label": "Type of algorithm",
"info": "(the type of algorithm used, example : embeddings creation, rag, nlp, neural network, llm...)",
},
{
"type": gr.Textbox,
"label": "Algorithm Name",
"info": "(the case-sensitive common name of the algorithm, example: randomForest, naive bayes, cnn, rnn, transformers, if you are directly using a foundation model, let it empty and fill the field foundationModelName...)",
},
{
"type": gr.Textbox,
"label": "Algorithm Uri",
"info": "(the URI of the model, if publicly available)",
},
{
"type": gr.Textbox,
"label": "Foundation Model Name",
"info": "(if a foundation model is used, its case-sensitive common name, example: llama3.1-8b, gpt4-o...)",
},
{
"type": gr.Textbox,
"label": "Foundation Model Uri",
"info": "(the URI of the foundation model, if publicly available)",
},
{
"type": gr.Number,
"label": "Number of parameters",
"info": "(if applicable, number of billions of total parameters of your model, e.g. 8 for llama3.1-8b)",
},
{
"type": gr.Textbox,
"label": "Framework",
"info": "(the common name of the software framework implementing the algorithm, if any)",
},
{
"type": gr.Textbox,
"label": "frameworkVersion",
"info": "(the version of the software framework implementing the algorithm, if any)",
},
{
"type": gr.Textbox,
"label": "classPath",
"info": "(the full class path of the algorithm within the framework, with elements separated by dots)",
},
{
"type": gr.Number,
"label": "Number of layers in the network",
"info": "(if deep learning, precise the number of layers in your network)",
},
{
"type": gr.Number,
"label": "Number of epochs",
"info": "(if training, the number of complete passes through the training dataset)",
},
{
"type": gr.Textbox,
"label": "optimizer",
"info": "(the algorithm used to optimize the models weights, e.g. gridSearch, lora, adam)",
},
{
"type": gr.Textbox,
"label": "quantization",
"info": "(the type of quantization used : fp32, fp16, b16, int8 ...)",
}
],
initial_count=0,
layout="column"
)
with gr.Accordion("Dataset", elem_id="mandatory_part"):
_, dataUsage, dataType, dataFormat, dataSize, dataQuantity, shape, source, sourceUri, owner, add_dataset_btn = create_dynamic_section(
section_name="dataset",
fields_config=[
{
"type": gr.Dropdown,
"label": "Data Usage",
"info": "Required field<br>(the use of the dataset: is it used as model input or output ?)",
"value": None,
"kwargs": {"choices": DATA_USAGE_OPTIONS},
"elem_classes": "mandatory_field",
},
{
"type": gr.Dropdown,
"label": "Data Type",
"info": "Required field<br>(the nature of the data used)",
"value": None,
"kwargs": {"choices": DATA_TYPES},
"elem_classes": "mandatory_field",
},
{
"type": gr.Dropdown,
"label": "Data Format",
"info": "(if the data is passed in the form of a file, what format is the data in?)",
"value": None,
"kwargs": {"choices": DATA_FORMAT}
},
{
"type": gr.Number,
"label": "Data Size",
"info": "(the size of the dataset (in Go), if small quantity just fill the field quantity)",
},
{
"type": gr.Number,
"label": "Data Quantity",
"info": "(the number of data in the dataset, e.g. 3 (images, audio or tokens))",
},
{
"type": gr.Textbox,
"label": "Data shape",
"info": "(the shape of your dataset, can be found with X.shape with dataframes, e.g. (12, 1000) for a 2D table with 12 columns and 1000 rows)",
},
{
"type": gr.Dropdown,
"label": "Data source",
"info": "(the kind of source of the dataset)",
"value": None,
"kwargs": {"choices": DATA_SOURCE}
},
{
"type": gr.Textbox,
"label": "Source Uri",
"info": "(the URI of the dataset if available)",
},
{
"type": gr.Textbox,
"label": "Owner",
"info": "(the owner of the dataset if available)",
}
],
initial_count=0,
layout="column"
)
with gr.Row():
measuredAccuracy = gr.Number(value=lambda: None,
label="Measured Accuracy", info="(the measured accuracy of your model (between 0 and 1))")
estimatedAccuracy = gr.Dropdown(value=None,
label="Estimated Accuracy",
choices=ACCURACY_LEVELS,
info="(estimated accuracy assessment)"
)
with gr.Row():
taskDescription = gr.Textbox(
label="Task description", info="(free field, to be fillied in if you have more details to share about your task)")
return [
taskFamily, taskStage, nbRequest,
trainingType, algorithmType, algorithmName, algorithmUri, foundationModelName, foundationModelUri, parametersNumber, framework, frameworkVersion, classPath, layersNumber, epochsNumber, optimizer, quantization,
dataUsage, dataType, dataFormat, dataSize, dataQuantity, shape, source, sourceUri, owner,
measuredAccuracy, estimatedAccuracy, taskDescription
]
def create_measures_tab():
"""Create the measures tab components."""
with gr.Tab("Measures", elem_id="mandatory_part"):
with gr.Accordion("Measures"):
_, measurementMethod, manufacturer, version, cpuTrackingMode, gpuTrackingMode, averageUtilizationCpu, averageUtilizationGpu, powerCalibrationMeasurement, durationCalibrationMeasurement, powerConsumption, measurementDuration, measurementDateTime, add_measurement_btn = create_dynamic_section(
section_name="measure",
fields_config=[
{
"type": gr.Textbox,
"label": "Method of measurement",
"info": "Required field<br>(the method used to perform the energy measure, example: codecarbon, carbonai, flops-compute, wattmeter...)",
"elem_classes": "mandatory_field",
},
{
"type": gr.Textbox,
"label": "Manufacturer",
"info": "(the builder of the measuring tool, if the measurement method is wattmeter)",
},
{
"type": gr.Textbox,
"label": "Version of the measurement tool",
"info": "(the version of the measuring tool, if any)",
},
{
"type": gr.Textbox,
"label": "CPU tracking mode",
"info": "(the method used to track the consumption of the CPU, example: constant, rapl...)",
},
{
"type": gr.Textbox,
"label": "GPU tracking mode",
"info": "(the method used to track the consumption of the GPU, example: constant, nvml...)",
},
{
"type": gr.Number,
"label": "Average CPU Utilization",
"info": "(the average percentage of use of the CPU during the task, for example: 0.5 if your CPU load was 50% on average)",
"minimum": 0,
"maximum": 1
},
{
"type": gr.Number,
"label": "Average GPU Utilization",
"info": "(the average percentage of use of the GPU during the task, for example: 0.8 if your GPU load was 80% on average)",
"minimum": 0,
"maximum": 1
},
{
"type": gr.Number,
"label": "Power calibration measurement",
"info": "(the power consumed (in kWh) during the calibration measure if any (to isolate the initial consumption of the hardware))",
},
{
"type": gr.Number,
"label": "Duration calibration measurement",
"info": "(the duration of the calibration if any (in seconds))",
},
{
"type": gr.Number,
"label": "Power consumption",
"info": "Required field<br>(the power consumption measure of the computing task (in kWh))",
"elem_classes": "mandatory_field",
},
{
"type": gr.Number,
"label": "Measurement Duration",
"info": "(the duration of the measurement (in seconds))",
},
{
"type": gr.Textbox,
"label": "Measurement date time",
"info": "(the date when the measurement began, in format YYYY-MM-DD HH:MM:SS)",
}
],
initial_count=0,
layout="column"
)
return [
measurementMethod, manufacturer, version, cpuTrackingMode, gpuTrackingMode,
averageUtilizationCpu, averageUtilizationGpu, powerCalibrationMeasurement,
durationCalibrationMeasurement, powerConsumption,
measurementDuration, measurementDateTime
]
def create_system_tab():
"""Create the system tab components."""
with gr.Tab("System"):
os = gr.Textbox(
label="OS", info="Required field<br>(name of the operating system)", elem_classes="mandatory_field")
distribution = gr.Textbox(
label="Distribution", info="(distribution of the operating system)")
distributionVersion = gr.Textbox(
label="Distribution Version", info="(distribution version)")
return [os, distribution, distributionVersion]
def create_software_tab():
"""Create the software tab components."""
with gr.Tab("Software"):
language = gr.Textbox(
label="Language", info="Required field<br>(name of the programming language used, example : c, java, julia, python...)", elem_classes="mandatory_field")
version_software = gr.Textbox(
label="Version", info="(version of the programming language used)")
return [language, version_software]
def create_infrastructure_tab():
"""Create the infrastructure tab components."""
with gr.Tab("Infrastructure", elem_id="mandatory_part"):
infraType = gr.Dropdown(value=None,
label="Infrastructure Type",
choices=INFRA_TYPES,
info="Required field<br>(the type of infrastructure used)",
elem_classes="mandatory_field"
)
cloudProvider = gr.Textbox(
label="Cloud Provider", info="(If you are on the cloud, the name of your cloud provider, for example : aws, azure, google, ovh...)")
cloudInstance = gr.Textbox(
label="Cloud Instance", info="(If you are on a cloud vm, the name of your cloud instance, for example : a1.large, dasv4-type2...)")
cloudService = gr.Textbox(
label="Cloud Service", info="(If you are using an AI cloud service, the name of your cloud service, for example : openAI service...)")
with gr.Accordion("Components", elem_id="mandatory_part"):
_, componentName, componentType, nbComponent, memorySize, manufacturer_infra, family, series, share, add_component_btn = create_dynamic_section(
section_name="component",
fields_config=[
{
"type": gr.Textbox,
"label": "Component Name",
"info": "(the name of this subsystem part of your infrastructure, example returned by codecarbon: 1 x NVIDIA GeForce GTX 1080 Ti)",
},
{
"type": gr.Textbox,
"label": "Component Type",
"info": "Required field<br>(the type of this subsystem part of your infrastructure, example: cpu, gpu, ram, hdd, sdd...)",
"elem_classes": "mandatory_field",
},
{
"type": gr.Number,
"label": "Number of Components",
"info": "Required field<br>(the number of items of this component in your infrastructure, if you have 1 RAM of 32Go, fill 1 here and 32 inside memorySize)",
"elem_classes": "mandatory_field",
},
{
"type": gr.Number,
"label": "Memory Size",
"info": "(the size of the memory of the component in Gbytes, useful to detail the memory associated to ONE of your gpus for example (if we want the total memory, we will multiply the memorySize by nbComponent). If the component is CPU do not fill the RAM size here, create another component for RAM, this field is for the embeded memory of a component.)",
},
{
"type": gr.Textbox,
"label": "Manufacturer",
"info": "(the name of the manufacturer, example: nvidia)",
},
{
"type": gr.Textbox,
"label": "Family",
"info": "(the family of this component, example: geforce)",
},
{
"type": gr.Textbox,
"label": "Series",
"info": "(the series of this component, example: gtx1080)",
},
{
"type": gr.Number,
"label": "Share",
"info": "(the percentage of the physical equipment used by the task, this sharing property should be set to 1 by default (if no share) and otherwise to the correct percentage, e.g. 0.5 if you share half-time.)",
}
],
initial_count=0,
layout="column"
)
return [
infraType, cloudProvider, cloudInstance, cloudService, componentName, componentType,
nbComponent, memorySize, manufacturer_infra, family,
series, share
]
def create_environment_tab():
"""Create the environment tab components."""
with gr.Tab("Environment"):
country = gr.Textbox(
label="Country", info="Required field", elem_classes="mandatory_field")
latitude = gr.Number(label="Latitude", value=lambda: None)
longitude = gr.Number(label="Longitude", value=lambda: None)
location = gr.Textbox(
label="Location", info="(more precise location like city, region or datacenter name)")
powerSupplierType = gr.Dropdown(value=lambda: None,
label="Power Supplier Type",
choices=POWER_SUPPLIER_TYPES,
info="(the type of power supplier)"
)
powerSource = gr.Dropdown(value=None,
label="Power Source",
choices=POWER_SOURCES,
info="(the source of power)"
)
powerSourceCarbonIntensity = gr.Number(value=lambda: None,
label="Power Source Carbon Intensity")
return [
country, latitude, longitude, location,
powerSupplierType, powerSource, powerSourceCarbonIntensity
]
def create_quality_tab():
"""Create the quality tab components."""
with gr.Tab("Quality"):
quality = gr.Dropdown(value=None,
label="Quality",
choices=QUALITY_LEVELS,
info="(the quality of the information you provided, 3 possibilities : high (percentage error +/-10%), medium (percentage error +/-25%), low (percentage error +/-50%))"
)
return [quality]
|