import gradio as gr from transformers import pipeline from transformers import AutoTokenizer # Create a PretrainedTokenizer object tokenizer = AutoTokenizer.from_pretrained('wannaphong/wav2vec2-large-xlsr-53-th-cv8-deepcut') # Pass the PretrainedTokenizer object as the tokenizer argument p = pipeline('text-generation', model='wannaphong/wav2vec2-large-xlsr-53-th-cv8-deepcut', tokenizer=tokenizer) def transcribe(audio): # Pass the audio file to the pipeline and obtain the output text = p(audio)["generated_text"] return text # Create a GraudioInput object for the audio input audio_input = gr.Audio(source="microphone", type="filepath") # Use the GraudioInput object as the value for the inputs argument gr.Interface( fn=transcribe, inputs=audio_input, outputs="text").launch()