import openai import gradio as gr from gradio.components import Audio, Textbox import os import re import tiktoken from transformers import GPT2Tokenizer import whisper import pandas as pd from datetime import datetime, timezone, timedelta import notion_df import concurrent.futures import nltk from nltk.tokenize import sent_tokenize nltk.download('punkt') import spacy from spacy import displacy from gradio import Markdown import threading # Define the tokenizer and model tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = openai.api_key = os.environ["OPENAI_API_KEY"] # Define the initial message and messages list initialt = 'You are a Tutor. Respond with ALWAYS layered "bullet points" (listing rather than sentences) to all input with a fun mneumonics to memorize that list. But you can answer up to 1200 words if the user requests longer response.' initial_message = {"role": "system", "content": initialt} messages = [initial_message] messages_rev = [initial_message] # Define the answer counter answer_count = 0 # Define the Notion API key API_KEY = os.environ["API_KEY"] nlp = spacy.load("en_core_web_sm") def process_nlp(system_message): # Colorize the system message text colorized_text = colorize_text(system_message['content']) return colorized_text from colour import Color # # define color combinations for different parts of speech # COLORS = { # "NOUN": "#000000", # Black # "VERB": "#ff6936", # Orange # "ADJ": "#4363d8", # Blue # "ADV": "#228b22", # Green # "digit": "#9a45d6", # Purple # "punct": "#ffcc00", # Yellow # "quote": "#b300b3" # Magenta # } # # define color combinations for individuals with dyslexia and color vision deficiencies # DYSLEXIA_COLORS = { # "NOUN": "#000000", # "VERB": "#ff6936", # "ADJ": "#4363d8", # "ADV": "#228b22", # "digit": "#9a45d6", # "punct": "#ffcc00", # "quote": "#b300b3", # } # RED_GREEN_COLORS = { # "NOUN": "#000000", # "VERB": "#fe642e", # Lighter orange # "ADJ": "#2e86c1", # Lighter blue # "ADV": "#82e0aa", # Lighter green # "digit": "#aa6c39", # Brown # "punct": "#f0b27a", # Lighter yellow # "quote": "#9932cc" # Darker magenta # } # # define a muted background color # BACKGROUND_COLOR = "#ffffff" # White # # define font and size # FONT = "OpenDyslexic" # FONT_SIZE = "18px" # def colorize_text(text, colors=DYSLEXIA_COLORS, background_color=None, font=FONT, font_size=FONT_SIZE): # if colors is None: # colors = COLORS # colorized_text = "" # lines = text.split("\n") # # set background color # if background_color is None: # background_color = BACKGROUND_COLOR # # iterate over the lines in the text # for line in lines: # # parse the line with the language model # doc = nlp(line) # # iterate over the tokens in the line # for token in doc: # # check if the token is an entity # if token.ent_type_: # # use dyslexia colors for entity if available # if colors == COLORS: # color = DYSLEXIA_COLORS.get(token.pos_, None) # else: # color = colors.get(token.pos_, None) # # check if a color is available for the token # if color is not None: # colorized_text += ( # f'' # f"{token.text}" # ) # else: # colorized_text += ( # f'' # f"{token.text}" # ) # else: # # check if a color is available for the token # color = colors.get(token.pos_, None) # if color is not None: # colorized_text += ( # f'' # f"{token.text}" # ) # elif token.is_digit: # colorized_text += ( # f'' # f"{token.text}" # ) # elif token.is_punct: # colorized_text += ( # f'' # f"{token.text}" # ) # elif token.is_quote: # colorized_text += ( # f'' # f"{token.text}" # ) # else: # # use larger font size for specific parts of speech, such as nouns and verbs # font_size = FONT_SIZE # if token.pos_ in ["NOUN", "VERB"]: # font_size = "22px" # colorized_text += ( # f'' # f"{token.text}" # ) # colorized_text += "
" # return colorized_text # # define color combinations for different parts of speech # COLORS = { # "NOUN": "#5e5e5e", # Dark gray # "VERB": "#ff6936", # Orange # "ADJ": "#4363d8", # Blue # "ADV": "#228b22", # Green # "digit": "#9a45d6", # Purple # "punct": "#ffcc00", # Yellow # "quote": "#b300b3" # Magenta # } # # define color combinations for individuals with dyslexia # DYSLEXIA_COLORS = { # "NOUN": "#5e5e5e", # "VERB": "#ff6936", # "ADJ": "#4363d8", # "ADV": "#228b22", # "digit": "#9a45d6", # "punct": "#ffcc00", # "quote": "#b300b3" # } # # define a muted background color # BACKGROUND_COLOR = "#f5f5f5" # Light gray # # define font and size # FONT = "Arial" # FONT_SIZE = "14px" # # load the English language model # nlp = spacy.load('en_core_web_sm') # def colorize_text(text, colors=DYSLEXIA_COLORS, background_color=None): # if colors is None: # colors = COLORS # colorized_text = "" # lines = text.split("\n") # # set background color # if background_color is None: # background_color = BACKGROUND_COLOR # # iterate over the lines in the text # for line in lines: # # parse the line with the language model # doc = nlp(line) # # iterate over the tokens in the line # for token in doc: # # check if the token is an entity # if token.ent_type_: # # use dyslexia colors for entity if available # if colors == COLORS: # color = DYSLEXIA_COLORS.get(token.pos_, None) # else: # color = colors.get(token.pos_, None) # # check if a color is available for the token # if color is not None: # colorized_text += ( # f'' # Add space between tokens # f"{token.text}" # ) # else: # colorized_text += ( # f'' # Add space between tokens # f"{token.text}" # ) # else: # # check if a color is available for the token # color = colors.get(token.pos_, None) # if color is not None: # colorized_text += ( # f'' # Add space between tokens # f"{token.text}" # ) # elif token.is_digit: # colorized_text += ( # f'' # Add space between tokens # f"{token.text}" # ) # elif token.is_punct: # colorized_text += ( # f'' # Add space between tokens # f"{token.text}" # ) # elif token.is_quote: # colorized_text += ( # f'' # Add space between tokens # f"{token.text}" # ) # else: # colorized_text += ( # f'' # Add space between tokens # f"{token.text}" # ) # colorized_text += "
" # return colorized_text # define color combinations for different parts of speech COLORS = { "NOUN": "#FF3300", "VERB": "#008000", "ADJ": "#1E90FF", "ADV": "#FF8C00", "digit": "#FF1493", "punct": "#8B0000", "quote": "#800080", } # define color combinations for individuals with dyslexia DYSLEXIA_COLORS = { "NOUN": "#1E90FF", "VERB": "#006400", "ADJ": "#00CED1", "ADV": "#FF8C00", "digit": "#FF1493", "punct": "#A0522D", "quote": "#800080", } # define a muted background color BACKGROUND_COLOR = "#EAEAEA" # define font and size FONT = "Georgia" FONT_SIZE = "18px" def colorize_text(text, colors=None, background_color=None): if colors is None: colors = COLORS colorized_text = "" lines = text.split("\n") # set background color if background_color is None: background_color = BACKGROUND_COLOR for line in lines: doc = nlp(line) for token in doc: if token.ent_type_: # use dyslexia colors for entity if available if colors == COLORS: color = DYSLEXIA_COLORS.get(token.pos_, None) else: color = colors.get(token.pos_, None) if color is not None: colorized_text += ( f'' f"{token.text}" ) else: colorized_text += ( f'' f"{token.text}" ) else: color = colors.get(token.pos_, None) if color is not None: colorized_text += ( f'' f"{token.text}" ) elif token.is_digit: colorized_text += ( f'' f"{token.text}" ) elif token.is_punct: colorized_text += ( f'' f"{token.text}" ) elif token.is_quote: colorized_text += ( f'' f"{token.text}" ) else: colorized_text += ( f'' f"{token.text}" ) colorized_text += " " colorized_text += "
" return colorized_text def colorize_and_update(system_message, submit_update): colorized_system_message = colorize_text(system_message['content']) submit_update(None, colorized_system_message) # Pass the colorized_system_message as the second output def update_text_output(system_message, submit_update): submit_update(system_message['content'], None) def train(text): now_et = datetime.now(timezone(timedelta(hours=-4))) published_date = now_et.strftime('%m-%d-%y %H:%M') df = pd.DataFrame([text]) notion_df.upload(df, 'https://www.notion.so/US-62e861a0b35f43da8ef9a7789512b8c2?pvs=4', title=str(published_date), api_key=API_KEY) def transcribe(audio, text, submit_update=None): global messages global answer_count transcript = {'text': ''} input_text = [] # Check if the first word of the first line is "COLORIZE" if text and text.split("\n")[0].split(" ")[0].strip().upper() == "COLORIZE": train(text) colorized_input = colorize_text(text) return text, colorized_input # Transcribe the audio if provided if audio is not None: audio_file = open(audio, "rb") transcript = openai.Audio.transcribe("whisper-1", audio_file, language="en") # Tokenize the text input if text is not None: # Split the input text into sentences sentences = re.split("(?<=[.!?]) +", text) # Initialize a list to store the tokens input_tokens = [] # Add each sentence to the input_tokens list for sentence in sentences: # Tokenize the sentence using the GPT-2 tokenizer sentence_tokens = tokenizer.encode(sentence) # Check if adding the sentence would exceed the token limit if len(input_tokens) + len(sentence_tokens) < 1440: # Add the sentence tokens to the input_tokens list input_tokens.extend(sentence_tokens) else: # If adding the sentence would exceed the token limit, truncate it sentence_tokens = sentence_tokens[:1440-len(input_tokens)] input_tokens.extend(sentence_tokens) break # Decode the input tokens into text input_text = tokenizer.decode(input_tokens) # Add the input text to the messages list messages.append({"role": "user", "content": transcript["text"]+input_text}) # Check if the accumulated tokens have exceeded 2096 num_tokens = sum(len(tokenizer.encode(message["content"])) for message in messages) if num_tokens > 2096: # Concatenate the chat history chat_transcript = "\n\n".join([f"[ANSWER {answer_count}]{message['role']}: {message['content']}" for message in messages if message['role'] != 'system']) # Append the number of tokens used to the end of the chat transcript chat_transcript += f"\n\nNumber of tokens used: {num_tokens}\n\n" # Get the current time in Eastern Time (ET) now_et = datetime.now(timezone(timedelta(hours=-4))) # Format the time as string (YY-MM-DD HH:MM) published_date = now_et.strftime('%m-%d-%y %H:%M') # Upload the chat transcript to Notion df = pd.DataFrame([chat_transcript]) notion_df.upload(df, 'https://www.notion.so/US-62e861a0b35f43da8ef9a7789512b8c2?pvs=4', title=str(published_date+'FULL'), api_key=API_KEY) messages = [initial_message] messages.append({"role": "user", "content": initialt}) answer_count = 0 # Add the input text to the messages list messages.append({"role": "user", "content": input_text}) else: # Increment the answer counter answer_count += 1 # Generate the system message using the OpenAI API with concurrent.futures.ThreadPoolExecutor() as executor: prompt = [{"text": f"{message['role']}: {message['content']}\n\n"} for message in messages] system_message = openai.ChatCompletion.create( model="gpt-4", messages=messages, max_tokens=2000 )["choices"][0]["message"] # Wait for the completion of the OpenAI API call if submit_update: # Check if submit_update is not None update_text_output(system_message, submit_update) # Add the system message to the messages list messages.append(system_message) # Add the system message to the beginning of the messages list messages_rev.insert(0, system_message) # Add the input text to the messages list messages_rev.insert(0, {"role": "user", "content": input_text + transcript["text"]}) # Start a separate thread to process the colorization and update the Gradio interface if submit_update: # Check if submit_update is not None colorize_thread = threading.Thread(target=colorize_and_update, args=(system_message, submit_update)) colorize_thread.start() # Concatenate the chat history chat_transcript = "\n\n".join([f"[ANSWER {answer_count}]{message['role']}: {message['content']}" for message in messages_rev if message['role'] != 'system']) # Append the number of tokens used to the end of the chat transcript chat_transcript += f"\n\nNumber of tokens used: {num_tokens}\n\n" # Save the chat transcript to a file with open("conversation_history.txt", "a") as f: f.write(chat_transcript) # Upload the chat transcript to Notion now_et = datetime.now(timezone(timedelta(hours=-4))) published_date = now_et.strftime('%m-%d-%y %H:%M') df = pd.DataFrame([chat_transcript]) notion_df.upload(df, 'https://www.notion.so/US-62e861a0b35f43da8ef9a7789512b8c2?pvs=4', title=str(published_date), api_key=API_KEY) # Return the chat transcript return system_message['content'], colorize_text(system_message['content']) # Define the input and output components for Gradio audio_input = Audio(source="microphone", type="filepath", label="Record your message") text_input = Textbox(label="Type your message", max_length=4096) output_text = Textbox(label="Text Output") output_html = Markdown() output_audio = Audio() # Define the Gradio interface iface = gr.Interface( fn=transcribe, inputs=[audio_input, text_input], outputs=[output_text, output_html], title="Hold On, Pain Ends (HOPE)", description="Talk to Your USMLE Tutor HOPE. \n If you want to colorize your note, type COLORIZE in the first line of your input.", theme="compact", layout="vertical", allow_flagging=False ) # Run the Gradio interface iface.launch()