import gradio as gr from transformers import pipeline def classify_sentiment(audio, model): pipe = pipeline("audio-classification", model=model) pred = pipe(audio) return {dic["label"]: dic["score"] for dic in pred} input_audio = [gr.inputs.Audio(source="microphone", type="filepath", label="Record/ Drop audio"), gr.inputs.Dropdown(["hackathon-pln-es/wav2vec2-base-finetuned-sentiment-classification-MESD", "hackathon-pln-es/wav2vec2-base-finetuned-sentiment-mesd"], label="Model Name")] label = gr.outputs.Label(num_top_classes=5) ################### Gradio Web APP ################################ title = "Audio Sentiment Classifier" description = """

This application classifies the sentiment of the audio input provided by the user. #
#

#
#logo #
""" gr.Interface( fn = classify_sentiment, inputs = input_audio, outputs = label, examples=[["Examples/basta_neutral.wav", "hackathon-pln-es/wav2vec2-base-finetuned-sentiment-classification-MESD"], ["Examples/detras_disgust.wav", "hackathon-pln-es/wav2vec2-base-finetuned-sentiment-classification-MESD"], ["Examples/mortal_sadness.wav", "hackathon-pln-es/wav2vec2-base-finetuned-sentiment-classification-MESD"], ["Examples/respiracion_happiness.wav", "hackathon-pln-es/wav2vec2-base-finetuned-sentiment-classification-MESD"], ["Examples/robo_fear.wav", "hackathon-pln-es/wav2vec2-base-finetuned-sentiment-classification-MESD"]], theme="grass").launch()