import os import time import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer from threading import Thread # Loading the tokenizer and model from Hugging Face's model hub. tokenizer = AutoTokenizer.from_pretrained("soketlabs/pragna-1b", token=os.environ.get('HF_TOKEN')) model = AutoModelForCausalLM.from_pretrained( "soketlabs/pragna-1b", token=os.environ.get('HF_TOKEN'), revision='3c5b8b1309f7d89710331ba2f164570608af0de7' ) model.load_adapter('soketlabs/pragna-1b-it-v0.1', token=os.environ.get('HF_TOKEN')) # using CUDA for an optimal experience device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = model.to(device) # Defining a custom stopping criteria class for the model's text generation. class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: stop_ids = [2] # IDs of tokens where the generation should stop. for stop_id in stop_ids: if input_ids[0][-1] == stop_id: # Checking if the last generated token is a stop token. return True return False # Function to generate model predictions. def predict(message, history): history_transformer_format = history + [[message, ""]] stop = StopOnTokens() sys_prompt = 'You are Pragna, an AI built by Soket AI Labs. You should never lie and always tell facts. Help the user as much as you can and be open to say I dont know this if you are not sure of the answer' eos_token = tokenizer.eos_token messages = f'<|system|>\n{sys_prompt}{eos_token}' # Formatting the input for the model. messages += "".join(["".join(["<|user|>\n" + item[0], "<|assistant|>\n" + item[1]]) for item in history_transformer_format]) print(messages) model_inputs = tokenizer([messages], return_tensors="pt").to(device) streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( model_inputs, streamer=streamer, # max_new_tokens=300, # do_sample=True, # top_p=0.95, # top_k=50, # temperature=0.3, # repetition_penalty=10., # num_beams=1, max_new_tokens=300, do_sample=True, top_k=5, num_beams=1, use_cache=False, temperature=0.2, repetition_penalty=1.1, stopping_criteria=StoppingCriteriaList([stop]) ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() # Starting the generation in a separate thread. partial_message = "" for new_token in streamer: partial_message += new_token if '' in partial_message: # Breaking the loop if the stop token is generated. break yield partial_message def slow_echo(message, history): for i in range(len(message)): time.sleep(0.05) yield "You typed: " + message[: i+1] demo = gr.ChatInterface( predict, chatbot=gr.Chatbot(height=300), textbox=gr.Textbox(placeholder="Try Pragna SFT", container=False, scale=7), title="pragna-1b-it", description="Disclaimer: An initial checkpoint of the instruction tuned model is made available as a research preview. It is hereby cautioned that the model has the potential to produce hallucinatory and plausible yet inaccurate statements. Users are advised to exercise discretion when utilizing the generated content.", theme="soft", examples=['Tell me about India', 'मुझे भारत के बारे में बताओ?', 'भारत के प्रधान मंत्री कौन हैं', 'भारत को आजादी कब मिली', 'আমাকে ভারত সম্পর্কে বলুন', 'ભારતની રાજધાની શું છે?', 'મને ભારત વિશે કહો ', 'কলকাতার ঐতিহাসিক তাৎপর্য কী। বিস্তারিত বলুন।'], cache_examples=False, retry_btn=None, undo_btn="Delete Previous", clear_btn="Clear", ).queue() if __name__ == "__main__": demo.launch()