import os from flask import Flask, request, send_file from io import BytesIO from PIL import Image, ImageChops from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler import torch # Flaskアプリケーションの初期化 app = Flask(__name__) # グローバルなモデル辞書 models_load = {} def load_model(model_name): global models_load if model_name not in models_load: try: scheduler = EulerDiscreteScheduler.from_pretrained(model_name, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_name, scheduler=scheduler, torch_dtype=torch.float16) pipe = pipe.to("cuda") models_load[model_name] = pipe print(f"Model {model_name} loaded successfully.") except Exception as error: print(f"Error loading model {model_name}: {error}") models_load[model_name] = None def gen_fn(model_str, prompt, negative_prompt=None, noise=None, cfg_scale=None, num_inference_steps=None): if model_str not in models_load: load_model(model_str) if model_str in models_load and models_load[model_str] is not None: if noise == "random": noise = str(randint(0, 99999999999)) full_prompt = f'{prompt} {noise}' if noise else prompt print(f"Prompt: {full_prompt}") try: # モデル呼び出し result = models_load[model_str](full_prompt, num_inference_steps=num_inference_steps) image = result.images[0] # 生成された画像を取得 # Check if the image is completely black black = Image.new('RGB', image.size, (0, 0, 0)) if ImageChops.difference(image, black).getbbox() is None: return None, 'The image is completely black.' return image, None except Exception as e: print("Error generating image:", e) return None, f"Error generating image: {e}" else: print(f"Model {model_str} not found") return None, f"Model {model_str} not found" @app.route('/', methods=['GET']) def home(): prompt = request.args.get('prompt', '') model = request.args.get('model', '') noise = request.args.get('noise', None) num_inference_steps = request.args.get('steps', 50) # デフォルト値を設定 try: num_inference_steps = int(num_inference_steps) except ValueError: return 'Invalid "steps" parameter. It should be an integer.', 400 if not model: return 'Please provide a "model" query parameter in the URL.', 400 if not prompt: return 'Please provide a "prompt" query parameter in the URL.', 400 # Generate the image image, error_message = gen_fn(model, prompt, noise=noise, num_inference_steps=num_inference_steps) if error_message: return error_message, 400 if isinstance(image, Image.Image): img_io = BytesIO() image.save(img_io, format='PNG') img_io.seek(0) return send_file(img_io, mimetype='image/png', as_attachment=False) return 'Failed to generate image.', 500 if __name__ == '__main__': app.run(host='0.0.0.0', port=7860)