import time import numpy as np import torch num_steps = 1000 test_image_url = "https://static.wixstatic.com/media/4d6b49_42b9435ce1104008b1b5f7a3c9bfcd69~mv2.jpg/v1/fill/w_454,h_333,fp_0.50_0.50,q_90/4d6b49_42b9435ce1104008b1b5f7a3c9bfcd69~mv2.jpg" clip_model="ViT-L/14" clip_model_id ="laion5B-L-14" device = "cuda:0" if torch.cuda.is_available() else "cpu" print ("using device", device) from clip_retrieval.load_clip import load_clip, get_tokenizer # from clip_retrieval.clip_client import ClipClient, Modality model, preprocess = load_clip(clip_model, use_jit=True, device=device) tokenizer = get_tokenizer(clip_model) def test_text(prompt): text = tokenizer([prompt]).to(device) with torch.no_grad(): prompt_embededdings = model.encode_text(text) prompt_embededdings /= prompt_embededdings.norm(dim=-1, keepdim=True) return(prompt_embededdings) def test_image(input_im): input_im = Image.fromarray(input_im) prepro = preprocess(input_im).unsqueeze(0).to(device) with torch.no_grad(): image_embeddings = model.encode_image(prepro) image_embeddings /= image_embeddings.norm(dim=-1, keepdim=True) return(image_embeddings) def test_preprocessed_image(prepro): with torch.no_grad(): image_embeddings = model.encode_image(prepro) image_embeddings /= image_embeddings.norm(dim=-1, keepdim=True) return(image_embeddings) # performance test for text start = time.time() for i in range(num_steps): test_text("todo") end = time.time() average_time_seconds = (end - start) / num_steps average_time_seconds = average_time_seconds if average_time_seconds > 0 else 0.0000001 print("Average time for text: ", average_time_seconds, "s") print("Average time for text: ", average_time_seconds * 1000, "ms") print("Number of predictions per second for text: ", 1 / average_time_seconds) # download image from url import requests from PIL import Image from io import BytesIO response = requests.get(test_image_url) input_image = Image.open(BytesIO(response.content)) input_image = input_image.convert('RGB') # convert image to numpy array input_image = np.array(input_image) # performance test for image start = time.time() for i in range(num_steps): test_image(input_image) end = time.time() average_time_seconds = (end - start) / num_steps print("Average time for image: ", average_time_seconds, "s") print("Average time for image: ", average_time_seconds * 1000, "ms") print("Number of predictions per second for image: ", 1 / average_time_seconds) # performance test for preprocessed image input_im = Image.fromarray(input_image) prepro = preprocess(input_im).unsqueeze(0).to(device) start = time.time() for i in range(num_steps): test_preprocessed_image(prepro) end = time.time() average_time_seconds = (end - start) / num_steps print("Average time for preprocessed image: ", average_time_seconds, "s") print("Average time for preprocessed image: ", average_time_seconds * 1000, "ms") print("Number of predictions per second for preprocessed image: ", 1 / average_time_seconds)