from typing import List import numpy as np import torch import ray from ray import serve from PIL import Image from clip_retrieval.load_clip import load_clip, get_tokenizer # from clip_retrieval.clip_client import ClipClient, Modality @serve.deployment(num_replicas=6, ray_actor_options={"num_cpus": .2, "num_gpus": 0.1}) class CLIPTransform: def __init__(self): # os.environ["OMP_NUM_THREADS"] = "20" # torch.set_num_threads(20) # Load model self.device = "cuda:0" if torch.cuda.is_available() else "cpu" self._clip_model="ViT-L/14" self._clip_model_id ="laion5B-L-14" self.model, self.preprocess = load_clip(self._clip_model, use_jit=True, device=self.device) self.tokenizer = get_tokenizer(self._clip_model) print ("using device", self.device) @serve.batch(max_batch_size=32) # def text_to_embeddings(self, prompts: List[str]) -> torch.Tensor: def text_to_embeddings(self, prompts: List[str]) -> List[np.ndarray]: text = self.tokenizer(prompts).to(self.device) with torch.no_grad(): prompt_embededdings = self.model.encode_text(text) prompt_embededdings /= prompt_embededdings.norm(dim=-1, keepdim=True) prompt_embededdings = prompt_embededdings.cpu().numpy().tolist() return(prompt_embededdings) def image_to_embeddings(self, input_im): input_im = Image.fromarray(input_im) prepro = self.preprocess(input_im).unsqueeze(0).to(self.device) with torch.no_grad(): image_embeddings = self.model.encode_image(prepro) image_embeddings /= image_embeddings.norm(dim=-1, keepdim=True) return(image_embeddings) def preprocessed_image_to_emdeddings(self, prepro): with torch.no_grad(): image_embeddings = self.model.encode_image(prepro) image_embeddings /= image_embeddings.norm(dim=-1, keepdim=True) return(image_embeddings) # async def __call__(self, http_request: Request) -> str: # request = await http_request.json() # # print(type(request)) # # print(str(request)) # # switch based if we are using text or image # embeddings = None # if "text" in request: # prompt = request["text"] # embeddings = self.text_to_embeddings(prompt) # elif "image" in request: # image_url = request["image_url"] # # download image from url # import requests # from io import BytesIO # input_image = Image.open(BytesIO(image_url)) # input_image = input_image.convert('RGB') # input_image = np.array(input_image) # embeddings = self.image_to_embeddings(input_image) # elif "preprocessed_image" in request: # prepro = request["preprocessed_image"] # # create torch tensor on the device # prepro = torch.tensor(prepro).to(self.device) # embeddings = self.preprocessed_image_to_emdeddings(prepro) # else: # raise Exception("Invalid request") # return embeddings.cpu().numpy().tolist() deployment_graph = CLIPTransform.bind()