from gradio_client import Client import time import numpy as np import torch from api_helper import preprocess_image, encode_numpy_array clip_image_size = 224 num_steps = 1000 test_image_url = "https://static.wixstatic.com/media/4d6b49_42b9435ce1104008b1b5f7a3c9bfcd69~mv2.jpg/v1/fill/w_454,h_333,fp_0.50_0.50,q_90/4d6b49_42b9435ce1104008b1b5f7a3c9bfcd69~mv2.jpg" client = Client("http://127.0.0.1:7860/") print("do we have cuda", torch.cuda.is_available()) def test_text(): result = client.predict( "Howdy!", # str representing string value in 'Input' Textbox component api_name="/text_to_embeddings" ) return(result) def test_image(): result = client.predict( test_image_url, # str representing filepath or URL to image in 'Image Prompt' Image component api_name="/image_to_embeddings" ) return(result) def test_image_as_payload(payload): result = client.predict( payload, # image as string payload api_name="/image_as_payload_to_embeddings" ) return(result) # performance test for text start = time.time() for i in range(num_steps): test_text() end = time.time() average_time_seconds = (end - start) / num_steps print("Average time for text: ", average_time_seconds, "s") print("Average time for text: ", average_time_seconds * 1000, "ms") print("Number of predictions per second for text: ", 1 / average_time_seconds) # performance test for image start = time.time() for i in range(num_steps): test_image() end = time.time() average_time_seconds = (end - start) / num_steps print("Average time for image: ", average_time_seconds, "s") print("Average time for image: ", average_time_seconds * 1000, "ms") print("Number of predictions per second for image: ", 1 / average_time_seconds) # download image from url import requests from PIL import Image from io import BytesIO response = requests.get(test_image_url) input_image = Image.open(BytesIO(response.content)) input_image = input_image.convert('RGB') # convert image to numpy array input_image = np.array(input_image) if input_image.shape[0] > clip_image_size or input_image.shape[1] > clip_image_size: input_image = preprocess_image(input_image, clip_image_size) payload = encode_numpy_array(input_image) # performance test for image as payload start = time.time() for i in range(num_steps): test_image_as_payload(payload) end = time.time() average_time_seconds = (end - start) / num_steps print("Average time for image as payload: ", average_time_seconds, "s") print("Average time for image as payload: ", average_time_seconds * 1000, "ms") print("Number of predictions per second for image as payload: ", 1 / average_time_seconds)