import json import os import numpy as np import torch from PIL import Image import open_clip class CLIPTransform: def __init__(self): # os.environ["OMP_NUM_THREADS"] = "20" # torch.set_num_threads(20) # Load model self.device = "cuda:0" if torch.cuda.is_available() else "cpu" # if self.device == "cpu" and torch.backends.mps.is_available(): # self.device = torch.device("mps") # # ViT-H-14 # self._clip_model="ViT-H-14" # self._pretrained='laion2B-s32B-b79K' # # ViT-B-32 # self._clip_model="ViT-B-32" # self._pretrained='laion2b_s34b_b79k' # ViT-L/14 1.71gb self._clip_model="ViT-L-14" self._pretrained='datacomp_xl_s13b_b90k' self.model, _, self.preprocess = open_clip.create_model_and_transforms(self._clip_model, pretrained=self._pretrained) self.tokenizer = open_clip.get_tokenizer(self._clip_model) print ("using device", self.device) def text_to_embeddings(self, prompts): # if prompt is a string, convert to list if type(prompts) is str: prompts = [prompts] text = self.tokenizer(prompts).to(self.device) with torch.no_grad(): prompt_embededdings = self.model.encode_text(text) prompt_embededdings /= prompt_embededdings.norm(dim=-1, keepdim=True) return(prompt_embededdings) def image_to_embeddings(self, input_im): input_im = Image.fromarray(input_im) prepro = self.preprocess(input_im).unsqueeze(0).to(self.device) with torch.no_grad(): image_embeddings = self.model.encode_image(prepro) image_embeddings /= image_embeddings.norm(dim=-1, keepdim=True) return(image_embeddings) def preprocessed_image_to_emdeddings(self, prepro): with torch.no_grad(): image_embeddings = self.model.encode_image(prepro) image_embeddings /= image_embeddings.norm(dim=-1, keepdim=True) return(image_embeddings)