from asyncio import Queue, TaskGroup import asyncio from contextlib import asynccontextmanager import ray from chat_service import ChatService # from local_speaker_service import LocalSpeakerService from text_to_speech_service import TextToSpeechService from environment_state_actor import EnvironmentStateActor from ffmpeg_converter_actor import FFMpegConverterActor from agent_response import AgentResponse import json from asyncio import Semaphore class RespondToPromptAsync: def __init__( self, environment_state_actor:EnvironmentStateActor, audio_output_queue): voice_id="2OviOUQc1JsQRQgNkVBj" self.prompt_queue = Queue(maxsize=100) self.llm_sentence_queue = Queue(maxsize=100) self.speech_chunk_queue = Queue(maxsize=100) self.voice_id = voice_id self.audio_output_queue = audio_output_queue self.environment_state_actor = environment_state_actor self.processing_semaphore = Semaphore(1) self.sentence_queues = [] self.sentence_tasks = [] # self.ffmpeg_converter_actor = FFMpegConverterActor.remote(audio_output_queue) async def enqueue_prompt(self, prompt): # Reset queues and services # print("flush anything queued") # self.prompt_queue = Queue(maxsize=100) # self.llm_sentence_queue = Queue(maxsize=100) # self.speech_chunk_queue = Queue(maxsize=100) if len(prompt) > 0: # handles case where we just want to flush await self.prompt_queue.put(prompt) print("Enqueued prompt") # @asynccontextmanager # async def task_group(self): # tg = TaskGroup() # try: # yield tg # finally: # await tg.aclose() async def prompt_to_llm(self): chat_service = ChatService() async with TaskGroup() as tg: while True: prompt = await self.prompt_queue.get() agent_response = AgentResponse(prompt) async for text, is_complete_sentance in chat_service.get_responses_as_sentances_async(prompt): if chat_service.ignore_sentence(text): is_complete_sentance = False if not is_complete_sentance: agent_response['llm_preview'] = text await self.environment_state_actor.set_llm_preview.remote(text) continue agent_response['llm_preview'] = '' agent_response['llm_sentence'] = text agent_response['llm_sentences'].append(text) await self.environment_state_actor.add_llm_response_and_clear_llm_preview.remote(text) print(f"{agent_response['llm_sentence']} id: {agent_response['llm_sentence_id']} from prompt: {agent_response['prompt']}") sentence_response = agent_response.make_copy() new_queue = Queue() self.sentence_queues.append(new_queue) task = tg.create_task(self.llm_sentence_to_speech(sentence_response, new_queue)) self.sentence_tasks.append(task) agent_response['llm_sentence_id'] += 1 async def llm_sentence_to_speech(self, sentence_response, output_queue): tts_service = TextToSpeechService(self.voice_id) chunk_count = 0 async for chunk_response in tts_service.get_speech_chunks_async(sentence_response): chunk_response = chunk_response.make_copy() # await self.output_queue.put_async(chunk_response) await output_queue.put(chunk_response) chunk_response = { 'prompt': sentence_response['prompt'], 'llm_sentence_id': sentence_response['llm_sentence_id'], 'chunk_count': chunk_count, } chunk_id_json = json.dumps(chunk_response) await self.environment_state_actor.add_tts_raw_chunk_id.remote(chunk_id_json) chunk_count += 1 async def speech_to_converter(self): self.ffmpeg_converter_actor = FFMpegConverterActor.remote(self.audio_output_queue) await self.ffmpeg_converter_actor.start_process.remote() self.ffmpeg_converter_actor.run.remote() while True: for i, task in enumerate(self.sentence_tasks): # Skip this task/queue pair if task completed if task.done(): continue queue = self.sentence_queues[i] while not queue.empty(): chunk_response = await queue.get() audio_chunk_ref = chunk_response['tts_raw_chunk_ref'] audio_chunk = ray.get(audio_chunk_ref) await self.ffmpeg_converter_actor.push_chunk.remote(audio_chunk) break await asyncio.sleep(0.01) async def run(self): async with TaskGroup() as tg: # Use asyncio's built-in TaskGroup tg.create_task(self.prompt_to_llm()) tg.create_task(self.speech_to_converter())