from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error import numpy as np # Create a small dataset with 10 rows representing house prices X = np.array([[1000], [1500], [2000], [2500], [3000], [3500], [4000], [4500], [5000], [5500]]) y = np.array([50000, 75000, 100000, 125000, 150000, 175000, 200000, 225000, 250000, 275000]) # Split the dataset into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Create an instance of the Linear Regression model model = LinearRegression() # Train the model on the training data model.fit(X_train, y_train) # Make predictions on the testing data y_pred = model.predict(X_test) # Evaluate the model's performance mse = mean_squared_error(y_test, y_pred) coef = model.coef_[0] intercept = model.intercept_ score = model.score(X_test, y_test) def predict(sqft): return (model.predict([[sqft]])[0]).round(2) def get_model_details(): return {"mse": mse, "coef": coef, "intercept": intercept, "score": score}