#!/usr/bin/env python from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.llms import CTransformers # from langchain.chains import RetrievalQA # from langchain import PromptTemplate DB_FAISS_PATH = "mylib/vector_db" # Initialize embeddings and database outside of functions embeddings = HuggingFaceEmbeddings( model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"} ) db = FAISS.load_local(DB_FAISS_PATH, embeddings) # Initialize the LLM model once llm = CTransformers( model="TheBloke/Llama-2-7B-Chat-GGML", # model= "meta-llama/Llama-2-7b-chat-hf". model_type="llama", max_new_tokens=512, temperature=0.5, ) # Initialize the QA chain once # qa = RetrievalQA.from_chain_type(llm=llm, chain_type='stuff', retriever=db.as_retriever(search_kwargs={'k': 10}), return_source_documents=True) #retriever = db.as_retriever(search_kwargs={"k": 10}) def final_result(query): docs_and_scores = db.similarity_search_with_score(query,k=10) #response = retriever.get_relevant_documents(query) return docs_and_scores if __name__ == "__main__": while True: user_query = input( "Please enter Retailer, Brand, or Category (type 'exit' to quit): " ) if user_query == "exit": break llm_response = final_result(user_query) print(llm_response)