import json import gradio as gr import os from PIL import Image import plotly.graph_objects as go import plotly.express as px TITLE = "Diffusion Faces Cluster Explorer" clusters_12 = json.load(open("clusters/id_all_blip_clusters_12.json")) clusters_24 = json.load(open("clusters/id_all_blip_clusters_24.json")) clusters_48 = json.load(open("clusters/id_all_blip_clusters_48.json")) clusters_by_size = { 12: clusters_12, 24: clusters_24, 48: clusters_48, } def show_cluster(cl_id, num_clusters): if not cl_id: cl_id = 0 if not num_clusters: num_clusters = 12 cl_dct = clusters_by_size[num_clusters][cl_id] images = [] for i in range(6): img_path = "/".join([st.replace("/", "") for st in cl_dct['img_path_list'][i].split("//")][3:]) images.append((Image.open(os.path.join("identities-images", img_path)), "_".join([img_path.split("/")[0], img_path.split("/")[-1]]).replace('Photo_portrait_of_an_','').replace('Photo_portrait_of_a_','').replace('SD_v2_random_seeds_identity_','(SD v.2) ').replace('dataset-identities-dalle2_','(Dall-E 2) ').replace('SD_v1.4_random_seeds_identity_','(SD v.1.4) ').replace('_',' '))) model_fig = go.Figure() model_fig.add_trace(go.Bar(x=list(dict(cl_dct["labels_model"]).keys()), y=list(dict(cl_dct["labels_model"]).values()), marker_color=px.colors.qualitative.G10)) gender_fig = go.Figure() gender_fig.add_trace(go.Bar(x=list(dict(cl_dct["labels_gender"]).keys()), y=list(dict(cl_dct["labels_gender"]).values()), marker_color=px.colors.qualitative.G10)) ethnicity_fig = go.Figure() ethnicity_fig.add_trace(go.Bar(x=list(dict(cl_dct["labels_ethnicity"]).keys()), y=list(dict(cl_dct["labels_ethnicity"]).values()), marker_color=px.colors.qualitative.G10)) return (len(cl_dct['img_path_list']), gender_fig, model_fig, ethnicity_fig, images) with gr.Blocks(title=TITLE) as demo: gr.Markdown(f"# {TITLE}") gr.Markdown("## This Space lets you explore the data generated from [DiffusionBiasExplorer](https://huggingface.co/spaces/society-ethics/DiffusionBiasExplorer).") gr.HTML("""⚠️ DISCLAIMER: the images displayed by this tool were generated by text-to-image models and may depict offensive stereotypes or contain explicit content.""") num_clusters = gr.Radio([12,24,48], value=12, label="How many clusters do you want to make from the data?") with gr.Row(): with gr.Column(scale=4): gallery = gr.Gallery(label="Most representative images in cluster").style(grid=(3,3)) with gr.Column(): cluster_id = gr.Slider(minimum=0, maximum=num_clusters.value-1, step=1, value=0, label="Click to move between clusters") a = gr.Text(label="Number of images") with gr.Row(): c = gr.Plot(label="Model makeup of cluster") b = gr.Plot(label="Gender label makeup of cluster") d = gr.Plot(label="Ethnicity label makeup of cluster") demo.load(fn=show_cluster, inputs=[cluster_id, num_clusters], outputs=[a,b,c,d, gallery]) num_clusters.change(fn=show_cluster, inputs=[cluster_id, num_clusters], outputs=[a,b,c,d, gallery]) cluster_id.change(fn=show_cluster, inputs=[cluster_id, num_clusters], outputs=[a,b,c,d, gallery]) if __name__ == "__main__": demo.queue().launch(debug=True)