#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. """ Training script using the new "LazyConfig" python config files. This scripts reads a given python config file and runs the training or evaluation. It can be used to train any models or dataset as long as they can be instantiated by the recursive construction defined in the given config file. Besides lazy construction of models, dataloader, etc., this scripts expects a few common configuration parameters currently defined in "configs/common/train.py". To add more complicated training logic, you can easily add other configs in the config file and implement a new train_net.py to handle them. """ import logging from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import LazyConfig, instantiate from detectron2.engine import ( AMPTrainer, SimpleTrainer, default_argument_parser, default_setup, default_writers, hooks, launch, ) from detectron2.engine.defaults import create_ddp_model from detectron2.evaluation import inference_on_dataset, print_csv_format from detectron2.utils import comm logger = logging.getLogger("detectron2") def do_test(cfg, model): if "evaluator" in cfg.dataloader: ret = inference_on_dataset( model, instantiate(cfg.dataloader.test), instantiate(cfg.dataloader.evaluator) ) print_csv_format(ret) return ret def do_train(args, cfg): """ Args: cfg: an object with the following attributes: model: instantiate to a module dataloader.{train,test}: instantiate to dataloaders dataloader.evaluator: instantiate to evaluator for test set optimizer: instantaite to an optimizer lr_multiplier: instantiate to a fvcore scheduler train: other misc config defined in `configs/common/train.py`, including: output_dir (str) init_checkpoint (str) amp.enabled (bool) max_iter (int) eval_period, log_period (int) device (str) checkpointer (dict) ddp (dict) """ model = instantiate(cfg.model) logger = logging.getLogger("detectron2") logger.info("Model:\n{}".format(model)) model.to(cfg.train.device) cfg.optimizer.params.model = model optim = instantiate(cfg.optimizer) train_loader = instantiate(cfg.dataloader.train) model = create_ddp_model(model, **cfg.train.ddp) trainer = (AMPTrainer if cfg.train.amp.enabled else SimpleTrainer)(model, train_loader, optim) checkpointer = DetectionCheckpointer( model, cfg.train.output_dir, optimizer=optim, trainer=trainer, ) trainer.register_hooks( [ hooks.IterationTimer(), hooks.LRScheduler(scheduler=instantiate(cfg.lr_multiplier)), hooks.PeriodicCheckpointer(checkpointer, **cfg.train.checkpointer) if comm.is_main_process() else None, hooks.EvalHook(cfg.train.eval_period, lambda: do_test(cfg, model)), hooks.PeriodicWriter( default_writers(cfg.train.output_dir, cfg.train.max_iter), period=cfg.train.log_period, ) if comm.is_main_process() else None, ] ) checkpointer.resume_or_load(cfg.train.init_checkpoint, resume=args.resume) if args.resume and checkpointer.has_checkpoint(): # The checkpoint stores the training iteration that just finished, thus we start # at the next iteration start_iter = trainer.iter + 1 else: start_iter = 0 trainer.train(start_iter, cfg.train.max_iter) def main(args): cfg = LazyConfig.load(args.config_file) cfg = LazyConfig.apply_overrides(cfg, args.opts) default_setup(cfg, args) if args.eval_only: model = instantiate(cfg.model) model.to(cfg.train.device) model = create_ddp_model(model) DetectionCheckpointer(model).load(cfg.train.init_checkpoint) print(do_test(cfg, model)) else: do_train(args, cfg) if __name__ == "__main__": args = default_argument_parser().parse_args() launch( main, args.num_gpus, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), )