import streamlit as st from transformers import pipeline from transformers import AutoTokenizer as AT, AutoModelForSequenceClassification as AFSC modName = "madhurjindal/autonlp-Gibberish-Detector-492513457" # Gibberish Detection Model from HuggingFace mod = AFSC.from_pretrained(modName) TKR = AT.from_pretrained(modName) st.title("Gibberish Detector") user_input = st.text_input("Enter some words", "[Pre-populted Text]: pasghetti") st.markdown("Input was: ", user_input) classifier = pipeline("sentiment-analysis", model=mod, tokenizer=TKR) # result = classifier(["This is a sample text made by Sean Ramirez.", "This is another sample text."]) # leftover from initial testing if user_input is not None: col = st.columns(1) predicts = pipeline("sentiment-analysis", model=mod, tokenizer=TKR) col.header("Probabilities") for p in predicts: col.subheader(f"{ p['label']}: { round(p['score'] * 100, 1)}%")