import gradio as gr import pandas as pd import numpy as np import os import sys import re from datetime import datetime import json import torch from tqdm import tqdm from concurrent.futures import ThreadPoolExecutor, as_completed import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from huggingface_hub import HfApi import shutil import tempfile import time from queue import Queue import threading import time from stark_qa import load_qa from stark_qa.evaluator import Evaluator from utils.hub_storage import HubStorage from utils.token_handler import TokenHandler from stark_qa import load_qa from stark_qa.evaluator import Evaluator from utils.hub_storage import HubStorage from utils.token_handler import TokenHandler class ForumPost: def __init__(self, message: str, timestamp: str, post_type: str): self.message = message self.timestamp = timestamp self.post_type = post_type # 'submission' or 'status_update' class SubmissionForum: def __init__(self, forum_file="submissions/forum_posts.json", hub_storage=None): self.forum_file = forum_file self.hub_storage = hub_storage self.posts = self._load_posts() def _load_posts(self): """Load existing posts from JSON file in the hub""" try: # Try to get content from hub content = self.hub_storage.get_file_content(self.forum_file) if content: posts_data = json.loads(content) return [ForumPost(**post) for post in posts_data] return [] except Exception as e: print(f"Error loading forum posts: {e}") return [] def _save_posts(self): """Save posts to JSON file in the hub""" try: posts_data = [ { "message": post.message, "timestamp": post.timestamp, "post_type": post.post_type } for post in self.posts ] # Convert to JSON string json_content = json.dumps(posts_data, indent=4) # Save to hub self.hub_storage.save_to_hub( file_content=json_content, path_in_repo=self.forum_file, commit_message="Update forum posts" ) except Exception as e: print(f"Error saving forum posts: {e}") def add_submission_post(self, method_name: str, dataset: str, split: str): """Add a new submission post""" timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") message = f"📥 New submission: {method_name} on {split}/{dataset}" self.posts.append(ForumPost(message, timestamp, "submission")) self._save_posts() def add_status_update(self, method_name: str, new_status: str): """Add a status update post""" timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") emoji = "✅" if new_status == "approved" else "❌" message = f"{emoji} Status update: {method_name} has been {new_status}" self.posts.append(ForumPost(message, timestamp, "status_update")) self._save_posts() def get_recent_posts(self, limit=50): """Get recent posts, newest first""" return sorted( self.posts, key=lambda x: datetime.strptime(x.timestamp, "%Y-%m-%d %H:%M:%S"), reverse=True )[:limit] def format_posts_for_display(self, limit=50): """Format posts for Gradio Markdown display""" recent_posts = self.get_recent_posts(limit) if not recent_posts: return "No forum posts yet." formatted_posts = [] for post in recent_posts: formatted_posts.append( f"**{post.timestamp}** \n" f"{post.message} \n" f"{'---'}" ) return "\n\n".join(formatted_posts) # Initialize storage once at startup try: REPO_ID = "snap-stanford/stark-leaderboard" # Replace with your space name hub_storage = HubStorage(REPO_ID) forum = SubmissionForum(hub_storage=hub_storage) except Exception as e: print(f"Failed to initialize forum with hub storage: {e}") forum = SubmissionForum(hub_storage=hub_storage) def process_single_instance(args): """Process a single instance with improved validation and error handling""" idx, eval_csv, qa_dataset, evaluator, eval_metrics = args try: # Get query data query, query_id, answer_ids, meta_info = qa_dataset[idx] # Get predictions matching_preds = eval_csv[eval_csv['query_id'] == query_id]['pred_rank'] if len(matching_preds) == 0: print(f"Warning: No prediction found for query_id {query_id}") return None elif len(matching_preds) > 1: print(f"Warning: Multiple predictions found for query_id {query_id}, using first one") pred_rank = matching_preds.iloc[0] # Parse prediction if isinstance(pred_rank, str): try: pred_rank = eval(pred_rank) except Exception as e: print(f"Error parsing pred_rank for query_id {query_id}: {str(e)}") return None # Validate prediction format if not isinstance(pred_rank, list): print(f"Warning: pred_rank is not a list for query_id {query_id}") return None # # Validate and filter prediction values # valid_pred_rank = [] # for rank in pred_rank[:100]: # Only use top 100 predictions # if isinstance(rank, (int, np.integer)) and 0 <= rank < max_candidate_id: # valid_pred_rank.append(rank) # else: # print(f"Warning: Invalid prediction {rank} for query_id {query_id}") # if not valid_pred_rank: # print(f"Warning: No valid predictions for query_id {query_id}") # return None pred_dict = {pred_rank[i]: -i for i in range(min(100, len(pred_rank)))} answer_ids = torch.LongTensor(answer_ids) result = evaluator.evaluate(pred_dict, answer_ids, metrics=eval_metrics) result["idx"], result["query_id"] = idx, query_id return result except Exception as e: print(f"Error processing idx {idx}: {str(e)}") return None def compute_metrics(csv_path: str, dataset: str, split: str, num_workers: int = 4): """Compute metrics with improved thread safety and error handling""" start_time = time.time() # Dataset configuration candidate_ids_dict = { 'amazon': [i for i in range(957192)], 'mag': [i for i in range(1172724, 1872968)], 'prime': [i for i in range(129375)] } try: # Input validation if dataset not in candidate_ids_dict: raise ValueError(f"Invalid dataset '{dataset}'") if split not in ['test', 'test-0.1', 'human_generated_eval']: raise ValueError(f"Invalid split '{split}'") # Load and validate CSV print(f"\nLoading data for {dataset} {split}") eval_csv = pd.read_csv(csv_path) required_columns = ['query_id', 'pred_rank'] if not all(col in eval_csv.columns for col in required_columns): raise ValueError(f"CSV must contain columns: {required_columns}") eval_csv = eval_csv[required_columns] # Initialize components evaluator = Evaluator(candidate_ids_dict[dataset]) eval_metrics = ['hit@1', 'hit@5', 'recall@20', 'mrr'] qa_dataset = load_qa(dataset, human_generated_eval=split == 'human_generated_eval') split_idx = qa_dataset.get_idx_split() all_indices = split_idx[split].tolist() print(f"Processing {len(all_indices)} instances with {num_workers} threads") # Process instances results_list = [] valid_count = 0 error_count = 0 with ThreadPoolExecutor(max_workers=num_workers) as executor: futures = [ executor.submit( process_single_instance, (idx, eval_csv, qa_dataset, evaluator, eval_metrics) ) for idx in all_indices ] with tqdm(total=len(futures), desc="Processing") as pbar: for future in as_completed(futures): try: result = future.result() if result is not None: results_list.append(result) valid_count += 1 else: error_count += 1 except Exception as e: print(f"Error in future: {str(e)}") error_count += 1 pbar.update(1) # Compute final metrics if not results_list: raise ValueError("No valid results were produced") print(f"\nProcessing complete. Valid: {valid_count}, Errors: {error_count}") results_df = pd.DataFrame(results_list) final_results = { metric: results_df[metric].mean() for metric in eval_metrics } elapsed_time = time.time() - start_time print(f"Completed in {elapsed_time:.2f} seconds") return final_results except Exception as error: elapsed_time = time.time() - start_time error_msg = f"Error in compute_metrics ({elapsed_time:.2f}s): {str(error)}" print(error_msg) return error_msg # Data dictionaries for leaderboard data_synthesized_full = { 'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2'], 'STARK-AMAZON_Hit@1': [44.94, 15.29, 30.96, 26.56, 39.16, 40.93, 21.74, 42.08, 40.07, 46.10], 'STARK-AMAZON_Hit@5': [67.42, 47.93, 51.06, 50.01, 62.73, 64.37, 41.65, 66.87, 64.98, 66.02], 'STARK-AMAZON_R@20': [53.77, 44.49, 41.95, 52.05, 53.29, 54.28, 33.22, 56.52, 55.12, 53.44], 'STARK-AMAZON_MRR': [55.30, 30.20, 40.66, 37.75, 50.35, 51.60, 31.47, 53.46, 51.55, 55.51], 'STARK-MAG_Hit@1': [25.85, 10.51, 21.96, 12.88, 29.08, 30.06, 18.01, 37.90, 25.92, 31.18], 'STARK-MAG_Hit@5': [45.25, 35.23, 36.50, 39.01, 49.61, 50.58, 34.85, 56.74, 50.43, 46.42], 'STARK-MAG_R@20': [45.69, 42.11, 35.32, 46.97, 48.36, 50.49, 35.46, 46.40, 50.80, 43.94], 'STARK-MAG_MRR': [34.91, 21.34, 29.14, 29.12, 38.62, 39.66, 26.10, 47.25, 36.94, 38.39], 'STARK-PRIME_Hit@1': [12.75, 4.46, 6.53, 8.85, 12.63, 10.85, 10.10, 15.57, 15.10, 11.75], 'STARK-PRIME_Hit@5': [27.92, 21.85, 15.67, 21.35, 31.49, 30.23, 22.49, 33.42, 33.56, 23.85], 'STARK-PRIME_R@20': [31.25, 30.13, 16.52, 29.63, 36.00, 37.83, 26.34, 39.09, 38.05, 25.04], 'STARK-PRIME_MRR': [19.84, 12.38, 11.05, 14.73, 21.41, 19.99, 16.12, 24.11, 23.49, 17.39] } data_synthesized_10 = { 'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'], 'STARK-AMAZON_Hit@1': [42.68, 16.46, 30.09, 25.00, 39.02, 43.29, 18.90, 43.29, 40.85, 44.31, 45.49, 44.79], 'STARK-AMAZON_Hit@5': [67.07, 50.00, 49.27, 48.17, 64.02, 67.68, 37.80, 71.34, 62.80, 65.24, 71.13, 71.17], 'STARK-AMAZON_R@20': [54.48, 42.15, 41.91, 51.65, 49.30, 56.04, 34.73, 56.14, 52.47, 51.00, 53.77, 55.35], 'STARK-AMAZON_MRR': [54.02, 30.20, 39.30, 36.87, 50.32, 54.20, 28.76, 55.07, 51.54, 55.07, 55.91, 55.69], 'STARK-MAG_Hit@1': [27.81, 11.65, 22.89, 12.03, 28.20, 34.59, 19.17, 38.35, 25.56, 31.58, 36.54, 40.90], 'STARK-MAG_Hit@5': [45.48, 36.84, 37.26, 37.97, 52.63, 50.75, 33.46, 58.64, 50.37, 47.36, 53.17, 58.18], 'STARK-MAG_R@20': [44.59, 42.30, 44.16, 47.98, 49.25, 50.75, 29.85, 46.38, 53.03, 45.72, 48.36, 48.60], 'STARK-MAG_MRR': [35.97, 21.82, 30.00, 28.70, 38.55, 42.90, 26.06, 48.25, 36.82, 38.98, 44.15, 49.00], 'STARK-PRIME_Hit@1': [13.93, 5.00, 6.78, 7.14, 15.36, 12.14, 9.29, 16.79, 15.36, 15.00, 17.79, 18.28], 'STARK-PRIME_Hit@5': [31.07, 23.57, 16.15, 17.14, 31.07, 31.42, 20.7, 34.29, 32.86, 26.07, 36.90, 37.28], 'STARK-PRIME_R@20': [32.84, 30.50, 17.07, 32.95, 37.88, 37.34, 25.54, 41.11, 40.99, 27.78, 35.57, 34.05], 'STARK-PRIME_MRR': [21.68, 13.50, 11.42, 16.27, 23.50, 21.23, 15.00, 24.99, 23.70, 19.98, 26.27, 26.55] } data_human_generated = { 'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'], 'STARK-AMAZON_Hit@1': [27.16, 16.05, 25.93, 22.22, 39.50, 35.80, 29.63, 40.74, 46.91, 33.33, 53.09, 50.62], 'STARK-AMAZON_Hit@5': [51.85, 39.51, 54.32, 49.38, 64.19, 62.96, 46.91, 71.60, 72.84, 55.56, 74.07, 75.31], 'STARK-AMAZON_R@20': [29.23, 15.23, 23.69, 21.54, 35.46, 33.01, 21.21, 36.30, 40.22, 29.03, 35.46, 35.46], 'STARK-AMAZON_MRR': [18.79, 27.21, 37.12, 31.33, 52.65, 47.84, 38.61, 53.21, 58.74, 43.77, 62.11, 61.06], 'STARK-MAG_Hit@1': [32.14, 4.72, 25.00, 20.24, 28.57, 22.62, 16.67, 34.52, 23.81, 33.33, 38.10, 36.90], 'STARK-MAG_Hit@5': [41.67, 9.52, 30.95, 26.19, 41.67, 36.90, 28.57, 44.04, 41.67, 36.90, 45.24, 46.43], 'STARK-MAG_R@20': [32.46, 25.00, 27.24, 28.76, 35.95, 32.44, 21.74, 34.57, 39.85, 30.50, 35.95, 35.95], 'STARK-MAG_MRR': [37.42, 7.90, 27.98, 25.53, 35.81, 29.68, 21.59, 38.72, 31.43, 35.97, 42.00, 40.65], 'STARK-PRIME_Hit@1': [22.45, 2.04, 7.14, 6.12, 17.35, 16.33, 9.18, 25.51, 24.49, 15.31, 28.57, 28.57], 'STARK-PRIME_Hit@5': [41.84, 9.18, 13.27, 13.27, 34.69, 32.65, 21.43, 41.84, 39.80, 26.53, 46.94, 44.90], 'STARK-PRIME_R@20': [42.32, 10.69, 11.72, 17.62, 41.09, 39.01, 26.77, 48.10, 47.21, 25.56, 41.61, 41.61], 'STARK-PRIME_MRR': [30.37, 7.05, 10.07, 9.39, 26.35, 24.33, 15.24, 34.28, 32.98, 19.67, 36.32, 34.82] } # Initialize DataFrames df_synthesized_full = pd.DataFrame(data_synthesized_full) df_synthesized_10 = pd.DataFrame(data_synthesized_10) df_human_generated = pd.DataFrame(data_human_generated) # Model type definitions model_types = { 'Sparse Retriever': ['BM25'], 'Small Dense Retrievers': ['DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)'], 'LLM-based Dense Retrievers': ['ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b'], 'Multivector Retrievers': ['multi-ada-002', 'ColBERTv2'], 'LLM Rerankers': ['Claude3 Reranker', 'GPT4 Reranker'], 'Others': [] # Will be populated dynamically with submitted models } # Submission form validation functions def validate_email(email_str): """Validate email format(s)""" emails = [e.strip() for e in email_str.split(';')] email_pattern = re.compile(r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$') return all(email_pattern.match(email) for email in emails) def validate_github_url(url): """Validate GitHub URL format""" github_pattern = re.compile( r'^https?:\/\/(?:www\.)?github\.com\/[\w-]+\/[\w.-]+\/?$' ) return bool(github_pattern.match(url)) def validate_csv(file_obj): """Validate CSV file format and content""" try: df = pd.read_csv(file_obj.name) required_cols = ['query_id', 'pred_rank'] if not all(col in df.columns for col in required_cols): return False, "CSV must contain 'query_id' and 'pred_rank' columns" try: first_rank = eval(df['pred_rank'].iloc[0]) if isinstance(df['pred_rank'].iloc[0], str) else df['pred_rank'].iloc[0] if not isinstance(first_rank, list) or len(first_rank) < 20: return False, "pred_rank must be a list with at least 20 candidates" except: return False, "Invalid pred_rank format" return True, "Valid CSV file" except Exception as e: return False, f"Error processing CSV: {str(e)}" def sanitize_name(name): """Sanitize name for file system use""" return re.sub(r'[^a-zA-Z0-9]', '_', name) def read_json_from_hub(api: HfApi, repo_id: str, file_path: str) -> dict: """ Read and parse JSON file from HuggingFace Hub. Args: api: HuggingFace API instance repo_id: Repository ID file_path: Path to file in repository Returns: dict: Parsed JSON content """ try: # Download the file content as bytes content = api.hf_hub_download( repo_id=repo_id, filename=file_path, repo_type="space" ) # Read and parse JSON with open(content, 'r') as f: return json.load(f) except Exception as e: print(f"Error reading JSON file {file_path}: {str(e)}") return None def scan_submissions_directory(): """ Scans the submissions directory and updates the model types dictionary with submitted models. """ try: # Initialize HuggingFace API api = HfApi() # Track submissions for each split submissions_by_split = { 'test': [], 'test-0.1': [], 'human_generated_eval': [] } # Get all files from repository try: all_files = api.list_repo_files( repo_id=REPO_ID, repo_type="space" ) # Filter for files in submissions directory repo_files = [f for f in all_files if f.startswith('submissions/')] except Exception as e: print(f"Error listing repository contents: {str(e)}") return submissions_by_split # Group files by team folders folder_files = {} for filepath in repo_files: parts = filepath.split('/') if len(parts) < 3: # Need at least submissions/team_folder/file continue folder_name = parts[1] # team_folder name if folder_name not in folder_files: folder_files[folder_name] = [] folder_files[folder_name].append(filepath) # Process each team folder for folder_name, files in folder_files.items(): try: # Find latest.json in this folder latest_file = next((f for f in files if f.endswith('latest.json')), None) if not latest_file: print(f"No latest.json found in {folder_name}") continue # Read latest.json latest_info = read_json_from_hub(api, REPO_ID, latest_file) if not latest_info: print(f"Failed to read latest.json for {folder_name}") continue timestamp = latest_info.get('latest_submission') if not timestamp: print(f"No timestamp found in latest.json for {folder_name}") continue # Find metadata file for latest submission metadata_file = next( (f for f in files if f.endswith(f'metadata_{timestamp}.json')), None ) if not metadata_file: print(f"No matching metadata file found for {folder_name} timestamp {timestamp}") continue # Read metadata file submission_data = read_json_from_hub(api, REPO_ID, metadata_file) if not submission_data: print(f"Failed to read metadata for {folder_name}") continue if latest_info.get('status') != 'approved': print(f"Skipping unapproved submission in {folder_name}") continue # Add to submissions by split split = submission_data.get('Split') if split in submissions_by_split: submissions_by_split[split].append(submission_data) # Update model types if necessary method_name = submission_data.get('Method Name') model_type = submission_data.get('Model Type', 'Others') # Add to model type if it's a new method method_exists = any(method_name in methods for methods in model_types.values()) if not method_exists and model_type in model_types: model_types[model_type].append(method_name) except Exception as e: print(f"Error processing folder {folder_name}: {str(e)}") continue return submissions_by_split except Exception as e: print(f"Error scanning submissions directory: {str(e)}") return None def initialize_leaderboard(): """ Initialize the leaderboard with baseline results and submitted results. """ global df_synthesized_full, df_synthesized_10, df_human_generated try: # First, initialize with baseline results df_synthesized_full = pd.DataFrame(data_synthesized_full) df_synthesized_10 = pd.DataFrame(data_synthesized_10) df_human_generated = pd.DataFrame(data_human_generated) print("Initialized with baseline results") # Then scan and add submitted results submissions = scan_submissions_directory() if submissions: for split, split_submissions in submissions.items(): for submission in split_submissions: if submission.get('results'): # Make sure we have results # Update appropriate DataFrame based on split if split == 'test': df_to_update = df_synthesized_full elif split == 'test-0.1': df_to_update = df_synthesized_10 else: # human_generated_eval df_to_update = df_human_generated # Prepare new row data new_row = { 'Method': submission['Method Name'], f'STARK-{submission["Dataset"].upper()}_Hit@1': submission['results']['hit@1'], f'STARK-{submission["Dataset"].upper()}_Hit@5': submission['results']['hit@5'], f'STARK-{submission["Dataset"].upper()}_R@20': submission['results']['recall@20'], f'STARK-{submission["Dataset"].upper()}_MRR': submission['results']['mrr'] } # Update existing row or add new one method_mask = df_to_update['Method'] == submission['Method Name'] if method_mask.any(): for col in new_row: df_to_update.loc[method_mask, col] = new_row[col] else: df_to_update.loc[len(df_to_update)] = new_row print("Leaderboard initialization complete") except Exception as e: print(f"Error initializing leaderboard: {str(e)}") def get_file_content(file_path): """ Helper function to safely read file content from HuggingFace repository """ try: api = HfApi() content_path = api.hf_hub_download( repo_id=REPO_ID, filename=file_path, repo_type="space" ) with open(content_path, 'r') as f: return f.read() except Exception as e: print(f"Error reading file {file_path}: {str(e)}") return None def save_submission(submission_data, csv_file): """ Save submission data and CSV file using model_name_team_name format Args: submission_data (dict): Metadata and results for the submission csv_file: The uploaded CSV file object """ # Create folder name from model name and team name model_name_clean = sanitize_name(submission_data['Method Name']) team_name_clean = sanitize_name(submission_data['Team Name']) timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") # Create folder name: model_name_team_name folder_name = f"{model_name_clean}_{team_name_clean}" submission_id = f"{folder_name}_{timestamp}" # Create submission directory structure base_dir = "submissions" submission_dir = os.path.join(base_dir, folder_name) os.makedirs(submission_dir, exist_ok=True) # Save CSV file with timestamp to allow multiple submissions csv_filename = f"predictions_{timestamp}.csv" csv_path = os.path.join(submission_dir, csv_filename) if hasattr(csv_file, 'name'): with open(csv_file.name, 'rb') as source, open(csv_path, 'wb') as target: target.write(source.read()) # Add file paths to submission data submission_data.update({ "csv_path": csv_path, "submission_id": submission_id, "folder_name": folder_name }) # Save metadata as JSON with timestamp metadata_path = os.path.join(submission_dir, f"metadata_{timestamp}.json") with open(metadata_path, 'w') as f: json.dump(submission_data, f, indent=4) # Update latest.json to track most recent submission latest_path = os.path.join(submission_dir, "latest.json") with open(latest_path, 'w') as f: json.dump({ "latest_submission": timestamp, "status": "pending_review", "method_name": submission_data['Method Name'] }, f, indent=4) return submission_id def update_leaderboard_data(submission_data): """ Update leaderboard data with new submission results Only uses model name in the displayed table """ global df_synthesized_full, df_synthesized_10, df_human_generated # Determine which DataFrame to update based on split split_to_df = { 'test': df_synthesized_full, 'test-0.1': df_synthesized_10, 'human_generated_eval': df_human_generated } df_to_update = split_to_df[submission_data['Split']] submitted_dataset = submission_data['Dataset'].upper() # Prepare new row data new_row = { 'Method': submission_data['Method Name'], f'STARK-{submitted_dataset}_Hit@1': submission_data['results']['hit@1'], f'STARK-{submitted_dataset}_Hit@5': submission_data['results']['hit@5'], f'STARK-{submitted_dataset}_R@20': submission_data['results']['recall@20'], f'STARK-{submitted_dataset}_MRR': submission_data['results']['mrr'] } # Check if method already exists method_mask = df_to_update['Method'] == submission_data['Method Name'] if method_mask.any(): # Update existing row for col in new_row: df_to_update.loc[method_mask, col] = new_row[col] else: # For new method, create row with NaN for other datasets all_columns = df_to_update.columns full_row = {col: None for col in all_columns} # Initialize with NaN full_row.update(new_row) # Update with the submitted dataset's values df_to_update.loc[len(df_to_update)] = full_row # Function to get emails from meta_data def get_emails_from_metadata(meta_data): """ Extracts emails from the meta_data dictionary. Args: meta_data (dict): The metadata dictionary that contains the 'Contact Email(s)' field. Returns: list: A list of email addresses. """ return [email.strip() for email in meta_data.get("Contact Email(s)", "").split(";")] # Function to format meta_data as an HTML table (without Prediction CSV) def format_metadata_as_table(meta_data): """ Formats metadata dictionary into an HTML table for the email. Handles multiple contact emails separated by a semicolon. Args: meta_data (dict): Dictionary containing submission metadata. Returns: str: HTML string representing the metadata table. """ table_rows = "" for key, value in meta_data.items(): if key == "Contact Email(s)": # Ensure that contact emails are split by semicolon emails = value.split(';') formatted_emails = "; ".join([email.strip() for email in emails]) table_rows += f"