import gradio as gr import pandas as pd import numpy as np import os import re from datetime import datetime import json import torch from tqdm import tqdm from concurrent.futures import ProcessPoolExecutor, as_completed import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from stark_qa import load_qa from stark_qa.evaluator import Evaluator def process_single_instance(args): idx, eval_csv, qa_dataset, evaluator, eval_metrics = args query, query_id, answer_ids, meta_info = qa_dataset[idx] try: pred_rank = eval_csv[eval_csv['query_id'] == query_id]['pred_rank'].item() except IndexError: raise IndexError(f'Error when processing query_id={query_id}, please make sure the predicted results exist for this query.') except Exception as e: raise RuntimeError(f'Unexpected error occurred while fetching prediction rank for query_id={query_id}: {e}') if isinstance(pred_rank, str): try: pred_rank = eval(pred_rank) except SyntaxError as e: raise ValueError(f'Failed to parse pred_rank as a list for query_id={query_id}: {e}') if not isinstance(pred_rank, list): raise TypeError(f'Error when processing query_id={query_id}, expected pred_rank to be a list but got {type(pred_rank)}.') pred_dict = {pred_rank[i]: -i for i in range(min(100, len(pred_rank)))} answer_ids = torch.LongTensor(answer_ids) result = evaluator.evaluate(pred_dict, answer_ids, metrics=eval_metrics) result["idx"], result["query_id"] = idx, query_id return result def compute_metrics(csv_path: str, dataset: str, split: str, num_workers: int = 4): candidate_ids_dict = { 'amazon': [i for i in range(957192)], 'mag': [i for i in range(1172724, 1872968)], 'prime': [i for i in range(129375)] } try: eval_csv = pd.read_csv(csv_path) if 'query_id' not in eval_csv.columns: raise ValueError('No `query_id` column found in the submitted csv.') if 'pred_rank' not in eval_csv.columns: raise ValueError('No `pred_rank` column found in the submitted csv.') eval_csv = eval_csv[['query_id', 'pred_rank']] if dataset not in candidate_ids_dict: raise ValueError(f"Invalid dataset '{dataset}', expected one of {list(candidate_ids_dict.keys())}.") if split not in ['test', 'test-0.1', 'human_generated_eval']: raise ValueError(f"Invalid split '{split}', expected one of ['test', 'test-0.1', 'human_generated_eval'].") evaluator = Evaluator(candidate_ids_dict[dataset]) eval_metrics = ['hit@1', 'hit@5', 'recall@20', 'mrr'] qa_dataset = load_qa(dataset, human_generated_eval=split == 'human_generated_eval') split_idx = qa_dataset.get_idx_split() all_indices = split_idx[split].tolist() results_list = [] query_ids = [] # Prepare args for each worker args = [(idx, eval_csv, qa_dataset, evaluator, eval_metrics) for idx in all_indices] with ProcessPoolExecutor(max_workers=num_workers) as executor: futures = [executor.submit(process_single_instance, arg) for arg in args] for future in tqdm(as_completed(futures), total=len(futures)): result = future.result() # This will raise an error if the worker encountered one results_list.append(result) query_ids.append(result['query_id']) # Concatenate results and compute final metrics eval_csv = pd.concat([eval_csv, pd.DataFrame(results_list)], ignore_index=True) final_results = { metric: np.mean(eval_csv[eval_csv['query_id'].isin(query_ids)][metric]) for metric in eval_metrics } return final_results except pd.errors.EmptyDataError: return "Error: The CSV file is empty or could not be read. Please check the file and try again." except FileNotFoundError: return f"Error: The file {csv_path} could not be found. Please check the file path and try again." except Exception as error: return f"{error}" # Data dictionaries for leaderboard data_synthesized_full = { 'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2'], 'STARK-AMAZON_Hit@1': [44.94, 15.29, 30.96, 26.56, 39.16, 40.93, 21.74, 42.08, 40.07, 46.10], 'STARK-AMAZON_Hit@5': [67.42, 47.93, 51.06, 50.01, 62.73, 64.37, 41.65, 66.87, 64.98, 66.02], 'STARK-AMAZON_R@20': [53.77, 44.49, 41.95, 52.05, 53.29, 54.28, 33.22, 56.52, 55.12, 53.44], 'STARK-AMAZON_MRR': [55.30, 30.20, 40.66, 37.75, 50.35, 51.60, 31.47, 53.46, 51.55, 55.51], 'STARK-MAG_Hit@1': [25.85, 10.51, 21.96, 12.88, 29.08, 30.06, 18.01, 37.90, 25.92, 31.18], 'STARK-MAG_Hit@5': [45.25, 35.23, 36.50, 39.01, 49.61, 50.58, 34.85, 56.74, 50.43, 46.42], 'STARK-MAG_R@20': [45.69, 42.11, 35.32, 46.97, 48.36, 50.49, 35.46, 46.40, 50.80, 43.94], 'STARK-MAG_MRR': [34.91, 21.34, 29.14, 29.12, 38.62, 39.66, 26.10, 47.25, 36.94, 38.39], 'STARK-PRIME_Hit@1': [12.75, 4.46, 6.53, 8.85, 12.63, 10.85, 10.10, 15.57, 15.10, 11.75], 'STARK-PRIME_Hit@5': [27.92, 21.85, 15.67, 21.35, 31.49, 30.23, 22.49, 33.42, 33.56, 23.85], 'STARK-PRIME_R@20': [31.25, 30.13, 16.52, 29.63, 36.00, 37.83, 26.34, 39.09, 38.05, 25.04], 'STARK-PRIME_MRR': [19.84, 12.38, 11.05, 14.73, 21.41, 19.99, 16.12, 24.11, 23.49, 17.39] } data_synthesized_10 = { 'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'], 'STARK-AMAZON_Hit@1': [42.68, 16.46, 30.09, 25.00, 39.02, 43.29, 18.90, 43.29, 40.85, 44.31, 45.49, 44.79], 'STARK-AMAZON_Hit@5': [67.07, 50.00, 49.27, 48.17, 64.02, 67.68, 37.80, 71.34, 62.80, 65.24, 71.13, 71.17], 'STARK-AMAZON_R@20': [54.48, 42.15, 41.91, 51.65, 49.30, 56.04, 34.73, 56.14, 52.47, 51.00, 53.77, 55.35], 'STARK-AMAZON_MRR': [54.02, 30.20, 39.30, 36.87, 50.32, 54.20, 28.76, 55.07, 51.54, 55.07, 55.91, 55.69], 'STARK-MAG_Hit@1': [27.81, 11.65, 22.89, 12.03, 28.20, 34.59, 19.17, 38.35, 25.56, 31.58, 36.54, 40.90], 'STARK-MAG_Hit@5': [45.48, 36.84, 37.26, 37.97, 52.63, 50.75, 33.46, 58.64, 50.37, 47.36, 53.17, 58.18], 'STARK-MAG_R@20': [44.59, 42.30, 44.16, 47.98, 49.25, 50.75, 29.85, 46.38, 53.03, 45.72, 48.36, 48.60], 'STARK-MAG_MRR': [35.97, 21.82, 30.00, 28.70, 38.55, 42.90, 26.06, 48.25, 36.82, 38.98, 44.15, 49.00], 'STARK-PRIME_Hit@1': [13.93, 5.00, 6.78, 7.14, 15.36, 12.14, 9.29, 16.79, 15.36, 15.00, 17.79, 18.28], 'STARK-PRIME_Hit@5': [31.07, 23.57, 16.15, 17.14, 31.07, 31.42, 20.7, 34.29, 32.86, 26.07, 36.90, 37.28], 'STARK-PRIME_R@20': [32.84, 30.50, 17.07, 32.95, 37.88, 37.34, 25.54, 41.11, 40.99, 27.78, 35.57, 34.05], 'STARK-PRIME_MRR': [21.68, 13.50, 11.42, 16.27, 23.50, 21.23, 15.00, 24.99, 23.70, 19.98, 26.27, 26.55] } data_human_generated = { 'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'], 'STARK-AMAZON_Hit@1': [27.16, 16.05, 25.93, 22.22, 39.50, 35.80, 29.63, 40.74, 46.91, 33.33, 53.09, 50.62], 'STARK-AMAZON_Hit@5': [51.85, 39.51, 54.32, 49.38, 64.19, 62.96, 46.91, 71.60, 72.84, 55.56, 74.07, 75.31], 'STARK-AMAZON_R@20': [29.23, 15.23, 23.69, 21.54, 35.46, 33.01, 21.21, 36.30, 40.22, 29.03, 35.46, 35.46], 'STARK-AMAZON_MRR': [18.79, 27.21, 37.12, 31.33, 52.65, 47.84, 38.61, 53.21, 58.74, 43.77, 62.11, 61.06], 'STARK-MAG_Hit@1': [32.14, 4.72, 25.00, 20.24, 28.57, 22.62, 16.67, 34.52, 23.81, 33.33, 38.10, 36.90], 'STARK-MAG_Hit@5': [41.67, 9.52, 30.95, 26.19, 41.67, 36.90, 28.57, 44.04, 41.67, 36.90, 45.24, 46.43], 'STARK-MAG_R@20': [32.46, 25.00, 27.24, 28.76, 35.95, 32.44, 21.74, 34.57, 39.85, 30.50, 35.95, 35.95], 'STARK-MAG_MRR': [37.42, 7.90, 27.98, 25.53, 35.81, 29.68, 21.59, 38.72, 31.43, 35.97, 42.00, 40.65], 'STARK-PRIME_Hit@1': [22.45, 2.04, 7.14, 6.12, 17.35, 16.33, 9.18, 25.51, 24.49, 15.31, 28.57, 28.57], 'STARK-PRIME_Hit@5': [41.84, 9.18, 13.27, 13.27, 34.69, 32.65, 21.43, 41.84, 39.80, 26.53, 46.94, 44.90], 'STARK-PRIME_R@20': [42.32, 10.69, 11.72, 17.62, 41.09, 39.01, 26.77, 48.10, 47.21, 25.56, 41.61, 41.61], 'STARK-PRIME_MRR': [30.37, 7.05, 10.07, 9.39, 26.35, 24.33, 15.24, 34.28, 32.98, 19.67, 36.32, 34.82] } # Initialize DataFrames df_synthesized_full = pd.DataFrame(data_synthesized_full) df_synthesized_10 = pd.DataFrame(data_synthesized_10) df_human_generated = pd.DataFrame(data_human_generated) # Model type definitions model_types = { 'Sparse Retriever': ['BM25'], 'Small Dense Retrievers': ['DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)'], 'LLM-based Dense Retrievers': ['ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b'], 'Multivector Retrievers': ['multi-ada-002', 'ColBERTv2'], 'LLM Rerankers': ['Claude3 Reranker', 'GPT4 Reranker'] } # Submission form validation functions def validate_email(email_str): """Validate email format(s)""" emails = [e.strip() for e in email_str.split(';')] email_pattern = re.compile(r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$') return all(email_pattern.match(email) for email in emails) def validate_github_url(url): """Validate GitHub URL format""" github_pattern = re.compile( r'^https?:\/\/(?:www\.)?github\.com\/[\w-]+\/[\w.-]+\/?$' ) return bool(github_pattern.match(url)) def validate_csv(file_obj): """Validate CSV file format and content""" try: df = pd.read_csv(file_obj.name) required_cols = ['query_id', 'pred_rank'] if not all(col in df.columns for col in required_cols): return False, "CSV must contain 'query_id' and 'pred_rank' columns" try: first_rank = eval(df['pred_rank'].iloc[0]) if isinstance(df['pred_rank'].iloc[0], str) else df['pred_rank'].iloc[0] if not isinstance(first_rank, list) or len(first_rank) < 20: return False, "pred_rank must be a list with at least 20 candidates" except: return False, "Invalid pred_rank format" return True, "Valid CSV file" except Exception as e: return False, f"Error processing CSV: {str(e)}" def sanitize_name(name): """Sanitize name for file system use""" return re.sub(r'[^a-zA-Z0-9]', '_', name) def save_submission(submission_data, csv_file): """ Save submission data and CSV file using model_name_team_name format Args: submission_data (dict): Metadata and results for the submission csv_file: The uploaded CSV file object """ # Create folder name from model name and team name model_name_clean = sanitize_name(submission_data['method_name']) team_name_clean = sanitize_name(submission_data['team_name']) timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") # Create folder name: model_name_team_name folder_name = f"{model_name_clean}_{team_name_clean}" submission_id = f"{folder_name}_{timestamp}" # Create submission directory structure base_dir = "submissions" submission_dir = os.path.join(base_dir, folder_name) os.makedirs(submission_dir, exist_ok=True) # Save CSV file with timestamp to allow multiple submissions csv_filename = f"predictions_{timestamp}.csv" csv_path = os.path.join(submission_dir, csv_filename) if hasattr(csv_file, 'name'): with open(csv_file.name, 'rb') as source, open(csv_path, 'wb') as target: target.write(source.read()) # Add file paths to submission data submission_data.update({ "csv_path": csv_path, "submission_id": submission_id, "folder_name": folder_name }) # Save metadata as JSON with timestamp metadata_path = os.path.join(submission_dir, f"metadata_{timestamp}.json") with open(metadata_path, 'w') as f: json.dump(submission_data, f, indent=4) # Update latest.json to track most recent submission latest_path = os.path.join(submission_dir, "latest.json") with open(latest_path, 'w') as f: json.dump({ "latest_submission": timestamp, "status": "pending_review", "method_name": submission_data['method_name'] }, f, indent=4) return submission_id def update_leaderboard_data(submission_data): """ Update leaderboard data with new submission results Only uses model name in the displayed table """ global df_synthesized_full, df_synthesized_10, df_human_generated # Determine which DataFrame to update based on split split_to_df = { 'test': df_synthesized_full, 'test-0.1': df_synthesized_10, 'human_generated_eval': df_human_generated } df_to_update = split_to_df[submission_data['split']] # Prepare new row data new_row = { 'Method': submission_data['method_name'], # Only use method name in table f'STARK-{submission_data["dataset"].upper()}_Hit@1': submission_data['results']['hit@1'], f'STARK-{submission_data["dataset"].upper()}_Hit@5': submission_data['results']['hit@5'], f'STARK-{submission_data["dataset"].upper()}_R@20': submission_data['results']['recall@20'], f'STARK-{submission_data["dataset"].upper()}_MRR': submission_data['results']['mrr'] } # Check if method already exists method_mask = df_to_update['Method'] == submission_data['method_name'] if method_mask.any(): # Update existing row for col in new_row: df_to_update.loc[method_mask, col] = new_row[col] else: # Add new row df_to_update.loc[len(df_to_update)] = new_row # Function to get emails from meta_data def get_emails_from_metadata(meta_data): """ Extracts emails from the meta_data dictionary. Args: meta_data (dict): The metadata dictionary that contains the 'Contact Email(s)' field. Returns: list: A list of email addresses. """ return [email.strip() for email in meta_data.get("Contact Email(s)", "").split(";")] # Function to format meta_data as an HTML table (without Prediction CSV) def format_metadata_as_table(meta_data): """ Formats metadata dictionary into an HTML table for the email. Handles multiple contact emails separated by a semicolon. Args: meta_data (dict): Dictionary containing submission metadata. Returns: str: HTML string representing the metadata table. """ table_rows = "" for key, value in meta_data.items(): if key == "Contact Email(s)": # Ensure that contact emails are split by semicolon emails = value.split(';') formatted_emails = "; ".join([email.strip() for email in emails]) table_rows += f"{key}{formatted_emails}" elif key != "Prediction CSV": # Exclude the Prediction CSV field table_rows += f"{key}{value}" table_html = f""" {table_rows}
""" return table_html # Function to get emails from meta_data def get_emails_from_metadata(meta_data): """ Extracts emails from the meta_data dictionary. Args: meta_data (dict): The metadata dictionary that contains the 'Contact Email(s)' field. Returns: list: A list of email addresses. """ return [email.strip() for email in meta_data.get("Contact Email(s)", "").split(";")] def send_error_notification(meta_data, error_info): """ Sends an email notification about an error during the evaluation process. Args: meta_data (dict): Submission metadata to be included in the email. error_info (str): Error message or notification content to be included in the email. Returns: None """ emails_to_send = get_emails_from_metadata(meta_data) send_from = 'stark-qa@cs.stanford.edu' recipients_str = ', '.join(emails_to_send) # Create the email container msg = MIMEMultipart('alternative') msg['Subject'] = 'STaRK Leaderboard Submission - Error Notification' msg['From'] = send_from msg['To'] = recipients_str # Format the metadata table metadata_table = format_metadata_as_table(meta_data) # Email body content with metadata table body = f"""

Dear STaRK Leaderboard Participant,

We encountered an issue during the evaluation of your recent submission:

{error_info}

Please verify your inputs and resubmit. If the issue persists, feel free to contact us at stark-qa@cs.stanford.edu with the error details and your dataset information.

Submitted Metadata:

{metadata_table}

Thank you for your participation.

Best regards,
The STaRK QA Team

""" msg.attach(MIMEText(body, 'html')) # Send the email try: with smtplib.SMTP('localhost') as server: server.sendmail(send_from, emails_to_send, msg.as_string()) # No CC for error notification print("Error notification sent successfully.") except Exception as e: print(f"Failed to send error notification: {e}") # Function to send a submission confirmation with evaluation results and metadata, CCing the sender def send_submission_confirmation(meta_data, eval_results): """ Sends an email notification confirming submission and including evaluation results and metadata, with an option to CC the sender. Args: meta_data (dict): Submission metadata to be included in the email. eval_results (dict): Dictionary of evaluation results to include in the email. Returns: None """ emails_to_send = get_emails_from_metadata(meta_data) send_from = 'stark-qa@cs.stanford.edu' recipients_str = ', '.join(emails_to_send) # Create the email container msg = MIMEMultipart('alternative') msg['Subject'] = 'STaRK Leaderboard Submission - Evaluation Results' msg['From'] = send_from msg['To'] = recipients_str msg['Cc'] = send_from # CC the sender only for success notification # Format the evaluation results and metadata table formatted_results = format_evaluation_results(eval_results) metadata_table = format_metadata_as_table(meta_data) # Email body content with evaluation results and metadata table body = f"""

Dear STaRK Leaderboard Participant,

Thank you for your submission to the STaRK leaderboard. We are pleased to inform you that the evaluation has been completed. Below are the results of your submission:

{formatted_results}

Submitted Metadata:

{metadata_table}

Your submission will be reviewed. Once approved, the results will be updated on the leaderboard within the next 48 business hours. If there are problems in the metadata that you submitted, one of our team members will reach out to you.

If you would like to withdraw your submission, simply reply to this email with "withdrawn."

We appreciate your participation and look forward to sharing your results on our leaderboard.

Best regards,
The STaRK QA Team

""" msg.attach(MIMEText(body, 'html')) # Send the email try: with smtplib.SMTP('localhost') as server: server.sendmail(send_from, emails_to_send + [send_from], msg.as_string()) # Include sender in recipients for CC print("Submission confirmation sent successfully.") except Exception as e: print(f"Failed to send submission confirmation: {e}") def process_submission( method_name, team_name, dataset, split, contact_email, code_repo, csv_file, model_description, hardware, paper_link ): """Process and validate submission""" try: # Input validation if not all([method_name, team_name, dataset, split, contact_email, code_repo, csv_file]): return "Error: Please fill in all required fields" # Length validation if len(method_name) > 25: return "Error: Method name must be 25 characters or less" if len(team_name) > 25: return "Error: Team name must be 25 characters or less" if not validate_email(contact_email): return "Error: Invalid email format" if not validate_github_url(code_repo): return "Error: Invalid GitHub repository URL" # Prepare metadata for email meta_data = { "Method Name": method_name, "Team Name": team_name, "Dataset": dataset, "Split": split, "Contact Email(s)": contact_email, "Code Repository": code_repo, "Model Description": model_description, "Hardware": hardware, "(Optional) Paper link": paper_link } # Save CSV file timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") model_name_clean = sanitize_name(method_name) team_name_clean = sanitize_name(team_name) # Create directory structure in the HuggingFace space base_dir = "submissions" # This will be in the HF space root submission_dir = os.path.join(base_dir, f"{model_name_clean}_{team_name_clean}") os.makedirs(submission_dir, exist_ok=True) # Save CSV file csv_filename = f"predictions_{timestamp}.csv" csv_path = os.path.join(submission_dir, csv_filename) if hasattr(csv_file, 'name'): with open(csv_file.name, 'rb') as source, open(csv_path, 'wb') as target: target.write(source.read()) # Validate CSV file csv_valid, csv_message = validate_csv(csv_file) if not csv_valid: error_message = f"Error with CSV file: {csv_message}" send_error_notification(meta_data, error_message) return error_message # Process CSV file through evaluation pipeline try: results = compute_metrics( csv_file.name, dataset=dataset.lower(), split=split, num_workers=4 ) if isinstance(results, str) and results.startswith("Error"): send_error_notification(meta_data, results) return f"Evaluation error: {results}" # Multiply results by 100 and round to 2 decimal places processed_results = { "hit@1": round(results['hit@1'] * 100, 2), "hit@5": round(results['hit@5'] * 100, 2), "recall@20": round(results['recall@20'] * 100, 2), "mrr": round(results['mrr'] * 100, 2) } # Prepare submission data submission_data = { "method_name": method_name, "team_name": team_name, "dataset": dataset, "split": split, "contact_email": contact_email, "code_repo": code_repo, "model_description": model_description, "hardware": hardware, "paper_link": paper_link, "results": processed_results, "status": "pending_review", "submission_date": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), "csv_path": csv_path } # Save metadata metadata_path = os.path.join(submission_dir, f"metadata_{timestamp}.json") with open(metadata_path, 'w') as f: json.dump(submission_data, f, indent=4) # Save latest.json latest_path = os.path.join(submission_dir, "latest.json") with open(latest_path, 'w') as f: json.dump({ "latest_submission": timestamp, "status": "pending_review", "method_name": method_name }, f, indent=4) # Send email confirmation send_submission_confirmation(meta_data, processed_results) # Update leaderboard data update_leaderboard_data(submission_data) return f""" Submission successful! Evaluation Results: Hit@1: {processed_results['hit@1']:.2f}% Hit@5: {processed_results['hit@5']:.2f}% Recall@20: {processed_results['recall@20']:.2f}% MRR: {processed_results['mrr']:.2f}% Your submission has been saved and is pending review. A confirmation email has been sent to {contact_email}. Once approved, your results will appear in the leaderboard under the method name: {method_name} """ except Exception as e: error_message = f"Error processing submission: {str(e)}" send_error_notification(meta_data, error_message) return error_message except Exception as e: error_message = f"Error processing submission: {str(e)}" send_error_notification(meta_data, error_message) return error_message def filter_by_model_type(df, selected_types): if not selected_types: return df.head(0) selected_models = [model for type in selected_types for model in model_types[type]] return df[df['Method'].isin(selected_models)] def format_dataframe(df, dataset): columns = ['Method'] + [col for col in df.columns if dataset in col] filtered_df = df[columns].copy() filtered_df.columns = [col.split('_')[-1] if '_' in col else col for col in filtered_df.columns] filtered_df = filtered_df.sort_values('MRR', ascending=False) return filtered_df def update_tables(selected_types): filtered_df_full = filter_by_model_type(df_synthesized_full, selected_types) filtered_df_10 = filter_by_model_type(df_synthesized_10, selected_types) filtered_df_human = filter_by_model_type(df_human_generated, selected_types) outputs = [] for df in [filtered_df_full, filtered_df_10, filtered_df_human]: for dataset in ['AMAZON', 'MAG', 'PRIME']: outputs.append(format_dataframe(df, f"STARK-{dataset}")) return outputs css = """ table > thead { white-space: normal } table { --cell-width-1: 250px } table > tbody > tr > td:nth-child(2) > div { overflow-x: auto } .tab-nav { border-bottom: 1px solid rgba(255, 255, 255, 0.1); margin-bottom: 1rem; } """ # Main application with gr.Blocks(css=css) as demo: gr.Markdown("# Semi-structured Retrieval Benchmark (STaRK) Leaderboard") gr.Markdown("Refer to the [STaRK paper](https://arxiv.org/pdf/2404.13207) for details on metrics, tasks and models.") # Model type filter model_type_filter = gr.CheckboxGroup( choices=list(model_types.keys()), value=list(model_types.keys()), label="Model types", interactive=True ) # Initialize dataframes list all_dfs = [] # Create nested tabs structure with gr.Tabs() as outer_tabs: with gr.TabItem("Synthesized (full)"): with gr.Tabs() as inner_tabs1: for dataset in ['AMAZON', 'MAG', 'PRIME']: with gr.TabItem(dataset): all_dfs.append(gr.DataFrame(interactive=False)) with gr.TabItem("Synthesized (10%)"): with gr.Tabs() as inner_tabs2: for dataset in ['AMAZON', 'MAG', 'PRIME']: with gr.TabItem(dataset): all_dfs.append(gr.DataFrame(interactive=False)) with gr.TabItem("Human-Generated"): with gr.Tabs() as inner_tabs3: for dataset in ['AMAZON', 'MAG', 'PRIME']: with gr.TabItem(dataset): all_dfs.append(gr.DataFrame(interactive=False)) # Submission section gr.Markdown("---") gr.Markdown("## Submit Your Results") gr.Markdown(""" Submit your results to be included in the leaderboard. Please ensure your submission meets all requirements. For questions, contact stark-qa@cs.stanford.edu """) with gr.Row(): with gr.Column(): method_name = gr.Textbox( label="Method Name (max 25 chars)*", placeholder="e.g., MyRetrievalModel-v1" ) team_name = gr.Textbox( label="Team Name (max 25 chars)*", placeholder="e.g., Stanford NLP" ) dataset = gr.Dropdown( choices=["amazon", "mag", "prime"], label="Dataset*", value="amazon" ) split = gr.Dropdown( choices=["test", "test-0.1", "human_generated_eval"], label="Split*", value="test" ) contact_email = gr.Textbox( label="Contact Email(s)*", placeholder="email@example.com; another@example.com" ) with gr.Column(): code_repo = gr.Textbox( label="Code Repository*", placeholder="https://github.com/username/repository" ) csv_file = gr.File( label="Prediction CSV*", file_types=[".csv"] ) model_description = gr.Textbox( label="Model Description*", lines=3, placeholder="Briefly describe how your retriever model works..." ) hardware = gr.Textbox( label="Hardware Specifications*", placeholder="e.g., 4x NVIDIA A100 80GB" ) paper_link = gr.Textbox( label="Paper Link (Optional)", placeholder="https://arxiv.org/abs/..." ) submit_btn = gr.Button("Submit", variant="primary") result = gr.Textbox(label="Submission Status", interactive=False) # Set up event handlers model_type_filter.change( update_tables, inputs=[model_type_filter], outputs=all_dfs ) submit_btn.click( process_submission, inputs=[ method_name, team_name, dataset, split, contact_email, code_repo, csv_file, model_description, hardware, paper_link ], outputs=result ) # Initial table update demo.load( update_tables, inputs=[model_type_filter], outputs=all_dfs ) # Launch the application demo.launch()