import gradio as gr import pandas as pd import numpy as np import os import re from datetime import datetime import json import torch from tqdm import tqdm from concurrent.futures import ProcessPoolExecutor, as_completed import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from stark_qa import load_qa from stark_qa.evaluator import Evaluator def process_single_instance(args): idx, eval_csv, qa_dataset, evaluator, eval_metrics = args query, query_id, answer_ids, meta_info = qa_dataset[idx] try: pred_rank = eval_csv[eval_csv['query_id'] == query_id]['pred_rank'].item() except IndexError: raise IndexError(f'Error when processing query_id={query_id}, please make sure the predicted results exist for this query.') except Exception as e: raise RuntimeError(f'Unexpected error occurred while fetching prediction rank for query_id={query_id}: {e}') if isinstance(pred_rank, str): try: pred_rank = eval(pred_rank) except SyntaxError as e: raise ValueError(f'Failed to parse pred_rank as a list for query_id={query_id}: {e}') if not isinstance(pred_rank, list): raise TypeError(f'Error when processing query_id={query_id}, expected pred_rank to be a list but got {type(pred_rank)}.') pred_dict = {pred_rank[i]: -i for i in range(min(100, len(pred_rank)))} answer_ids = torch.LongTensor(answer_ids) result = evaluator.evaluate(pred_dict, answer_ids, metrics=eval_metrics) result["idx"], result["query_id"] = idx, query_id return result def compute_metrics(csv_path: str, dataset: str, split: str, num_workers: int = 4): candidate_ids_dict = { 'amazon': [i for i in range(957192)], 'mag': [i for i in range(1172724, 1872968)], 'prime': [i for i in range(129375)] } try: eval_csv = pd.read_csv(csv_path) if 'query_id' not in eval_csv.columns: raise ValueError('No `query_id` column found in the submitted csv.') if 'pred_rank' not in eval_csv.columns: raise ValueError('No `pred_rank` column found in the submitted csv.') eval_csv = eval_csv[['query_id', 'pred_rank']] if dataset not in candidate_ids_dict: raise ValueError(f"Invalid dataset '{dataset}', expected one of {list(candidate_ids_dict.keys())}.") if split not in ['test', 'test-0.1', 'human_generated_eval']: raise ValueError(f"Invalid split '{split}', expected one of ['test', 'test-0.1', 'human_generated_eval'].") evaluator = Evaluator(candidate_ids_dict[dataset]) eval_metrics = ['hit@1', 'hit@5', 'recall@20', 'mrr'] qa_dataset = load_qa(dataset, human_generated_eval=split == 'human_generated_eval') split_idx = qa_dataset.get_idx_split() all_indices = split_idx[split].tolist() results_list = [] query_ids = [] # Prepare args for each worker args = [(idx, eval_csv, qa_dataset, evaluator, eval_metrics) for idx in all_indices] with ProcessPoolExecutor(max_workers=num_workers) as executor: futures = [executor.submit(process_single_instance, arg) for arg in args] for future in tqdm(as_completed(futures), total=len(futures)): result = future.result() # This will raise an error if the worker encountered one results_list.append(result) query_ids.append(result['query_id']) # Concatenate results and compute final metrics eval_csv = pd.concat([eval_csv, pd.DataFrame(results_list)], ignore_index=True) final_results = { metric: np.mean(eval_csv[eval_csv['query_id'].isin(query_ids)][metric]) for metric in eval_metrics } return final_results except pd.errors.EmptyDataError: return "Error: The CSV file is empty or could not be read. Please check the file and try again." except FileNotFoundError: return f"Error: The file {csv_path} could not be found. Please check the file path and try again." except Exception as error: return f"{error}" # Data dictionaries for leaderboard data_synthesized_full = { 'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2'], 'STARK-AMAZON_Hit@1': [44.94, 15.29, 30.96, 26.56, 39.16, 40.93, 21.74, 42.08, 40.07, 46.10], 'STARK-AMAZON_Hit@5': [67.42, 47.93, 51.06, 50.01, 62.73, 64.37, 41.65, 66.87, 64.98, 66.02], 'STARK-AMAZON_R@20': [53.77, 44.49, 41.95, 52.05, 53.29, 54.28, 33.22, 56.52, 55.12, 53.44], 'STARK-AMAZON_MRR': [55.30, 30.20, 40.66, 37.75, 50.35, 51.60, 31.47, 53.46, 51.55, 55.51], 'STARK-MAG_Hit@1': [25.85, 10.51, 21.96, 12.88, 29.08, 30.06, 18.01, 37.90, 25.92, 31.18], 'STARK-MAG_Hit@5': [45.25, 35.23, 36.50, 39.01, 49.61, 50.58, 34.85, 56.74, 50.43, 46.42], 'STARK-MAG_R@20': [45.69, 42.11, 35.32, 46.97, 48.36, 50.49, 35.46, 46.40, 50.80, 43.94], 'STARK-MAG_MRR': [34.91, 21.34, 29.14, 29.12, 38.62, 39.66, 26.10, 47.25, 36.94, 38.39], 'STARK-PRIME_Hit@1': [12.75, 4.46, 6.53, 8.85, 12.63, 10.85, 10.10, 15.57, 15.10, 11.75], 'STARK-PRIME_Hit@5': [27.92, 21.85, 15.67, 21.35, 31.49, 30.23, 22.49, 33.42, 33.56, 23.85], 'STARK-PRIME_R@20': [31.25, 30.13, 16.52, 29.63, 36.00, 37.83, 26.34, 39.09, 38.05, 25.04], 'STARK-PRIME_MRR': [19.84, 12.38, 11.05, 14.73, 21.41, 19.99, 16.12, 24.11, 23.49, 17.39] } data_synthesized_10 = { 'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'], 'STARK-AMAZON_Hit@1': [42.68, 16.46, 30.09, 25.00, 39.02, 43.29, 18.90, 43.29, 40.85, 44.31, 45.49, 44.79], 'STARK-AMAZON_Hit@5': [67.07, 50.00, 49.27, 48.17, 64.02, 67.68, 37.80, 71.34, 62.80, 65.24, 71.13, 71.17], 'STARK-AMAZON_R@20': [54.48, 42.15, 41.91, 51.65, 49.30, 56.04, 34.73, 56.14, 52.47, 51.00, 53.77, 55.35], 'STARK-AMAZON_MRR': [54.02, 30.20, 39.30, 36.87, 50.32, 54.20, 28.76, 55.07, 51.54, 55.07, 55.91, 55.69], 'STARK-MAG_Hit@1': [27.81, 11.65, 22.89, 12.03, 28.20, 34.59, 19.17, 38.35, 25.56, 31.58, 36.54, 40.90], 'STARK-MAG_Hit@5': [45.48, 36.84, 37.26, 37.97, 52.63, 50.75, 33.46, 58.64, 50.37, 47.36, 53.17, 58.18], 'STARK-MAG_R@20': [44.59, 42.30, 44.16, 47.98, 49.25, 50.75, 29.85, 46.38, 53.03, 45.72, 48.36, 48.60], 'STARK-MAG_MRR': [35.97, 21.82, 30.00, 28.70, 38.55, 42.90, 26.06, 48.25, 36.82, 38.98, 44.15, 49.00], 'STARK-PRIME_Hit@1': [13.93, 5.00, 6.78, 7.14, 15.36, 12.14, 9.29, 16.79, 15.36, 15.00, 17.79, 18.28], 'STARK-PRIME_Hit@5': [31.07, 23.57, 16.15, 17.14, 31.07, 31.42, 20.7, 34.29, 32.86, 26.07, 36.90, 37.28], 'STARK-PRIME_R@20': [32.84, 30.50, 17.07, 32.95, 37.88, 37.34, 25.54, 41.11, 40.99, 27.78, 35.57, 34.05], 'STARK-PRIME_MRR': [21.68, 13.50, 11.42, 16.27, 23.50, 21.23, 15.00, 24.99, 23.70, 19.98, 26.27, 26.55] } data_human_generated = { 'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'], 'STARK-AMAZON_Hit@1': [27.16, 16.05, 25.93, 22.22, 39.50, 35.80, 29.63, 40.74, 46.91, 33.33, 53.09, 50.62], 'STARK-AMAZON_Hit@5': [51.85, 39.51, 54.32, 49.38, 64.19, 62.96, 46.91, 71.60, 72.84, 55.56, 74.07, 75.31], 'STARK-AMAZON_R@20': [29.23, 15.23, 23.69, 21.54, 35.46, 33.01, 21.21, 36.30, 40.22, 29.03, 35.46, 35.46], 'STARK-AMAZON_MRR': [18.79, 27.21, 37.12, 31.33, 52.65, 47.84, 38.61, 53.21, 58.74, 43.77, 62.11, 61.06], 'STARK-MAG_Hit@1': [32.14, 4.72, 25.00, 20.24, 28.57, 22.62, 16.67, 34.52, 23.81, 33.33, 38.10, 36.90], 'STARK-MAG_Hit@5': [41.67, 9.52, 30.95, 26.19, 41.67, 36.90, 28.57, 44.04, 41.67, 36.90, 45.24, 46.43], 'STARK-MAG_R@20': [32.46, 25.00, 27.24, 28.76, 35.95, 32.44, 21.74, 34.57, 39.85, 30.50, 35.95, 35.95], 'STARK-MAG_MRR': [37.42, 7.90, 27.98, 25.53, 35.81, 29.68, 21.59, 38.72, 31.43, 35.97, 42.00, 40.65], 'STARK-PRIME_Hit@1': [22.45, 2.04, 7.14, 6.12, 17.35, 16.33, 9.18, 25.51, 24.49, 15.31, 28.57, 28.57], 'STARK-PRIME_Hit@5': [41.84, 9.18, 13.27, 13.27, 34.69, 32.65, 21.43, 41.84, 39.80, 26.53, 46.94, 44.90], 'STARK-PRIME_R@20': [42.32, 10.69, 11.72, 17.62, 41.09, 39.01, 26.77, 48.10, 47.21, 25.56, 41.61, 41.61], 'STARK-PRIME_MRR': [30.37, 7.05, 10.07, 9.39, 26.35, 24.33, 15.24, 34.28, 32.98, 19.67, 36.32, 34.82] } # Initialize DataFrames df_synthesized_full = pd.DataFrame(data_synthesized_full) df_synthesized_10 = pd.DataFrame(data_synthesized_10) df_human_generated = pd.DataFrame(data_human_generated) # Model type definitions model_types = { 'Sparse Retriever': ['BM25'], 'Small Dense Retrievers': ['DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)'], 'LLM-based Dense Retrievers': ['ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b'], 'Multivector Retrievers': ['multi-ada-002', 'ColBERTv2'], 'LLM Rerankers': ['Claude3 Reranker', 'GPT4 Reranker'] } # Submission form validation functions def validate_email(email_str): """Validate email format(s)""" emails = [e.strip() for e in email_str.split(';')] email_pattern = re.compile(r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$') return all(email_pattern.match(email) for email in emails) def validate_github_url(url): """Validate GitHub URL format""" github_pattern = re.compile( r'^https?:\/\/(?:www\.)?github\.com\/[\w-]+\/[\w.-]+\/?$' ) return bool(github_pattern.match(url)) def validate_csv(file_obj): """Validate CSV file format and content""" try: df = pd.read_csv(file_obj.name) required_cols = ['query_id', 'pred_rank'] if not all(col in df.columns for col in required_cols): return False, "CSV must contain 'query_id' and 'pred_rank' columns" try: first_rank = eval(df['pred_rank'].iloc[0]) if isinstance(df['pred_rank'].iloc[0], str) else df['pred_rank'].iloc[0] if not isinstance(first_rank, list) or len(first_rank) < 20: return False, "pred_rank must be a list with at least 20 candidates" except: return False, "Invalid pred_rank format" return True, "Valid CSV file" except Exception as e: return False, f"Error processing CSV: {str(e)}" def sanitize_name(name): """Sanitize name for file system use""" return re.sub(r'[^a-zA-Z0-9]', '_', name) def save_submission(submission_data, csv_file): """ Save submission data and CSV file using model_name_team_name format Args: submission_data (dict): Metadata and results for the submission csv_file: The uploaded CSV file object """ # Create folder name from model name and team name model_name_clean = sanitize_name(submission_data['method_name']) team_name_clean = sanitize_name(submission_data['team_name']) timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") # Create folder name: model_name_team_name folder_name = f"{model_name_clean}_{team_name_clean}" submission_id = f"{folder_name}_{timestamp}" # Create submission directory structure base_dir = "submissions" submission_dir = os.path.join(base_dir, folder_name) os.makedirs(submission_dir, exist_ok=True) # Save CSV file with timestamp to allow multiple submissions csv_filename = f"predictions_{timestamp}.csv" csv_path = os.path.join(submission_dir, csv_filename) if hasattr(csv_file, 'name'): with open(csv_file.name, 'rb') as source, open(csv_path, 'wb') as target: target.write(source.read()) # Add file paths to submission data submission_data.update({ "csv_path": csv_path, "submission_id": submission_id, "folder_name": folder_name }) # Save metadata as JSON with timestamp metadata_path = os.path.join(submission_dir, f"metadata_{timestamp}.json") with open(metadata_path, 'w') as f: json.dump(submission_data, f, indent=4) # Update latest.json to track most recent submission latest_path = os.path.join(submission_dir, "latest.json") with open(latest_path, 'w') as f: json.dump({ "latest_submission": timestamp, "status": "pending_review", "method_name": submission_data['method_name'] }, f, indent=4) return submission_id def update_leaderboard_data(submission_data): """ Update leaderboard data with new submission results Only uses model name in the displayed table """ global df_synthesized_full, df_synthesized_10, df_human_generated # Determine which DataFrame to update based on split split_to_df = { 'test': df_synthesized_full, 'test-0.1': df_synthesized_10, 'human_generated_eval': df_human_generated } df_to_update = split_to_df[submission_data['split']] # Prepare new row data new_row = { 'Method': submission_data['method_name'], # Only use method name in table f'STARK-{submission_data["dataset"].upper()}_Hit@1': submission_data['results']['hit@1'], f'STARK-{submission_data["dataset"].upper()}_Hit@5': submission_data['results']['hit@5'], f'STARK-{submission_data["dataset"].upper()}_R@20': submission_data['results']['recall@20'], f'STARK-{submission_data["dataset"].upper()}_MRR': submission_data['results']['mrr'] } # Check if method already exists method_mask = df_to_update['Method'] == submission_data['method_name'] if method_mask.any(): # Update existing row for col in new_row: df_to_update.loc[method_mask, col] = new_row[col] else: # Add new row df_to_update.loc[len(df_to_update)] = new_row # Function to get emails from meta_data def get_emails_from_metadata(meta_data): """ Extracts emails from the meta_data dictionary. Args: meta_data (dict): The metadata dictionary that contains the 'Contact Email(s)' field. Returns: list: A list of email addresses. """ return [email.strip() for email in meta_data.get("Contact Email(s)", "").split(";")] # Function to format meta_data as an HTML table (without Prediction CSV) def format_metadata_as_table(meta_data): """ Formats metadata dictionary into an HTML table for the email. Handles multiple contact emails separated by a semicolon. Args: meta_data (dict): Dictionary containing submission metadata. Returns: str: HTML string representing the metadata table. """ table_rows = "" for key, value in meta_data.items(): if key == "Contact Email(s)": # Ensure that contact emails are split by semicolon emails = value.split(';') formatted_emails = "; ".join([email.strip() for email in emails]) table_rows += f"
Dear STaRK Leaderboard Participant,
We encountered an issue during the evaluation of your recent submission:
{error_info}
Please verify your inputs and resubmit. If the issue persists, feel free to contact us at stark-qa@cs.stanford.edu with the error details and your dataset information.
Submitted Metadata:
{metadata_table}Thank you for your participation.
Best regards,
The STaRK QA Team
Dear STaRK Leaderboard Participant,
Thank you for your submission to the STaRK leaderboard. We are pleased to inform you that the evaluation has been completed. Below are the results of your submission:
{formatted_results}
Submitted Metadata:
{metadata_table}Your submission will be reviewed. Once approved, the results will be updated on the leaderboard within the next 48 business hours. If there are problems in the metadata that you submitted, one of our team members will reach out to you.
If you would like to withdraw your submission, simply reply to this email with "withdrawn."
We appreciate your participation and look forward to sharing your results on our leaderboard.
Best regards,
The STaRK QA Team