import sys import os sys.path.append(os.path.abspath(os.path.join("", ".."))) import torch import torchvision import warnings warnings.filterwarnings("ignore") from PIL import Image from lora_w2w import LoRAw2w from utils import load_models, inference, save_model_w2w, save_model_for_diffusers from inversion import invert import argparse def main(): parser = argparse.ArgumentParser() parser.add_argument("--device", default="cuda:0", type=str) parser.add_argument("--mean_path", default="/files/mean.pt", type=str, help="Path to file with parameter means") parser.add_argument("--std_path", default="/files/std.pt", type=str, help="Path to file with parameter standard deviations.") parser.add_argument("--v_path", default="/files/V.pt", type=str, help="Path to V orthogonal projection/unprojection matrix.") parser.add_argument("--dim_path", default="/files/weight_dimensions.pt", type=str, help="Path to file with dimensions of LoRA layers. Used for saving in Diffusers pipeline format.") parser.add_argument("--imfolder", default="/inversion/images/real_image/real/", type=str, help="Path to folder containing image.") parser.add_argument("--mask_path", default=None, type=str, help="Path to mask file.") parser.add_argument("--epochs", default=400, type=int) parser.add_argument("--lr", default= 1e-1, type=float) parser.add_argument("--weight_decay", default= 1e-10, type=float) parser.add_argument("--dim", default= 10000, type=int, help="Number of principal component coefficients to optimize.") parser.add_argument("--diffusers_format", default=False, action="store_true", help="Whether to save in mode that can be loaded in Diffusers pipeline") parser.add_argument("--save_name", default="/files/inversion1.pt", type=str, help="Output path + filename.") ### variables args = parser.parse_args() device = args.device mean_path = args.mean_path std_path = args.std_path v_path = args.v_path dim_path = args.dim_path imfolder = args.imfolder mask_path = args.mask_path epochs = args.epochs lr = args.lr weight_decay = args.weight_decay dim = args.dim diffusers_format = args.diffusers_format save_name = args.save_name ### load models unet, vae, text_encoder, tokenizer, noise_scheduler = load_models(device) ### load files mean = torch.load(mean_path).bfloat16().to(device) std = torch.load(std_path).bfloat16().to(device) v = torch.load(v_path).bfloat16().to(device) weight_dimensions = torch.load(dim_path) ### initialize network proj = torch.zeros(1,dim).bfloat16().to(device) network = LoRAw2w( proj, mean, std, v[:,:dim], unet, rank=1, multiplier=1.0, alpha=27.0, train_method="xattn-strict" ).to(device, torch.bfloat16) ### run inversion network = invert(network=network, unet=unet, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, prompt = "sks person", noise_scheduler = noise_scheduler, epochs=epochs, image_path = imfolder, mask_path = mask_path, device = device) ### save model if diffusers_format: save_model_for_diffusers(network,std, mean, v, weight_dimensions, path=save_name) else: save_model_w2w(network, path=save_name) if __name__ == "__main__": main()