diff --git "a/IS424_Data_Mining/code/EDA.ipynb" "b/IS424_Data_Mining/code/EDA.ipynb" new file mode 100644--- /dev/null +++ "b/IS424_Data_Mining/code/EDA.ipynb" @@ -0,0 +1,2250 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 5780 entries, 0 to 5779\n", + "Data columns (total 52 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Unnamed: 0 5780 non-null int64 \n", + " 1 Index 5780 non-null int64 \n", + " 2 Unnamed: 0.1 5780 non-null int64 \n", + " 3 Headline 5780 non-null object \n", + " 4 Details 5780 non-null object \n", + " 5 Severity 5780 non-null object \n", + " 6 Category 5780 non-null object \n", + " 7 Region 5780 non-null object \n", + " 8 Datetime 5780 non-null object \n", + " 9 Year 5780 non-null int64 \n", + " 10 lat 3881 non-null float64\n", + " 11 lon 3881 non-null float64\n", + " 12 Cleaned_headline 5780 non-null object \n", + " 13 Cleaned_description 5780 non-null object \n", + " 14 Headline_Description 5780 non-null object \n", + " 15 found_words 5780 non-null object \n", + " 16 maritime_label 5780 non-null bool \n", + " 17 no_punctuation 5780 non-null object \n", + " 18 stemmed_words 5780 non-null object \n", + " 19 found_words2 5780 non-null object \n", + " 20 maritime_label2 5780 non-null bool \n", + " 21 stemmed_string 5780 non-null object \n", + " 22 found_words3 5780 non-null object \n", + " 23 maritime_label3 5780 non-null bool \n", + " 24 all_found_words 5780 non-null object \n", + " 25 banned_words_but_still_maritime 5780 non-null object \n", + " 26 no_punctuation_wordlist 5780 non-null object \n", + " 27 found_ports 5778 non-null object \n", + " 28 contains_port_info 5778 non-null float64\n", + " 29 Original Category 3074 non-null object \n", + " 30 Category 1 3074 non-null object \n", + " 31 Category 2 637 non-null object \n", + " 32 Category 3 106 non-null object \n", + " 33 Category 4 1 non-null object \n", + " 34 Category 5 0 non-null float64\n", + " 35 VD 3074 non-null float64\n", + " 36 VA 3074 non-null float64\n", + " 37 MPT 3074 non-null float64\n", + " 38 PC 3074 non-null float64\n", + " 39 PDC 3074 non-null float64\n", + " 40 PCA 3074 non-null float64\n", + " 41 CDL 3074 non-null float64\n", + " 42 IT 3074 non-null float64\n", + " 43 EP 3074 non-null float64\n", + " 44 NEW 3074 non-null float64\n", + " 45 CSD 3074 non-null float64\n", + " 46 RPE 3074 non-null float64\n", + " 47 MN 3074 non-null float64\n", + " 48 NM 3074 non-null float64\n", + " 49 if_labeled 5780 non-null bool \n", + " 50 Month 5780 non-null int64 \n", + " 51 Week 5780 non-null int64 \n", + "dtypes: bool(4), float64(18), int64(6), object(24)\n", + "memory usage: 2.1+ MB\n" + ] + } + ], + "source": [ + "# First, load the uploaded CSV file \n", + "import pandas as pd\n", + "data_path = 'all_port_labelled.csv'\n", + "data = pd.read_csv(data_path)\n", + "\n", + "# Display the first few rows of the dataframe and its summary statistics to get an initial understanding\n", + "data_head = data.head()\n", + "data_info = data.info()\n", + "data_description = data.describe(include='all')\n", + "\n", + "data_info\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0IndexUnnamed: 0.1HeadlineDetailsSeverityCategoryRegionDatetimeYear...ITEPNEWCSDRPEMNNMif_labeledMonthWeek
count5780.0000005780.0000005780.0000005780578057805780578057805780.000000...3074.0000003074.0000003074.0000003074.0000003074.0000003074.0000003074.00000057805780.0000005780.000000
uniqueNaNNaNNaN5682575048571115725NaN...NaNNaNNaNNaNNaNNaNNaN2NaNNaN
topNaNNaNNaNNo congestion at Port of ManilaUpdated media sources indicated on December 4 ...ModeratePort CongestionChina12/6/2020 14:40NaN...NaNNaNNaNNaNNaNNaNNaNFalseNaNNaN
freqNaNNaNNaN6328407108203NaN...NaNNaNNaNNaNNaNNaNNaN3074NaNNaN
mean2889.50000015762.303287113709.500865NaNNaNNaNNaNNaNNaN2019.285294...0.0712430.0087830.1981130.0078070.0344830.0618090.296031NaN7.03806228.968512
std1668.6866099078.05267872963.703513NaNNaNNaNNaNNaNNaN0.746283...0.2572720.0933220.3986430.0880280.1824950.2408470.456579NaN3.55593615.614850
min0.0000008.00000034.000000NaNNaNNaNNaNNaNNaN2017.000000...0.0000000.0000000.0000000.0000000.0000000.0000000.000000NaN1.0000001.000000
25%1444.7500008397.00000050904.500000NaNNaNNaNNaNNaNNaN2019.000000...0.0000000.0000000.0000000.0000000.0000000.0000000.000000NaN4.00000014.000000
50%2889.50000015128.500000101580.500000NaNNaNNaNNaNNaNNaN2019.000000...0.0000000.0000000.0000000.0000000.0000000.0000000.000000NaN8.00000033.000000
75%4334.25000021700.750000157966.750000NaNNaNNaNNaNNaNNaN2020.000000...0.0000000.0000000.0000000.0000000.0000000.0000001.000000NaN10.00000043.000000
max5779.00000035421.000000299524.000000NaNNaNNaNNaNNaNNaN2020.000000...1.0000001.0000001.0000001.0000001.0000001.0000001.000000NaN12.00000053.000000
\n", + "

11 rows × 52 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 Index Unnamed: 0.1 \\\n", + "count 5780.000000 5780.000000 5780.000000 \n", + "unique NaN NaN NaN \n", + "top NaN NaN NaN \n", + "freq NaN NaN NaN \n", + "mean 2889.500000 15762.303287 113709.500865 \n", + "std 1668.686609 9078.052678 72963.703513 \n", + "min 0.000000 8.000000 34.000000 \n", + "25% 1444.750000 8397.000000 50904.500000 \n", + "50% 2889.500000 15128.500000 101580.500000 \n", + "75% 4334.250000 21700.750000 157966.750000 \n", + "max 5779.000000 35421.000000 299524.000000 \n", + "\n", + " Headline \\\n", + "count 5780 \n", + "unique 5682 \n", + "top No congestion at Port of Manila \n", + "freq 6 \n", + "mean NaN \n", + "std NaN \n", + "min NaN \n", + "25% NaN \n", + "50% NaN \n", + "75% NaN \n", + "max NaN \n", + "\n", + " Details Severity \\\n", + "count 5780 5780 \n", + "unique 5750 4 \n", + "top Updated media sources indicated on December 4 ... Moderate \n", + "freq 3 2840 \n", + "mean NaN NaN \n", + "std NaN NaN \n", + "min NaN NaN \n", + "25% NaN NaN \n", + "50% NaN NaN \n", + "75% NaN NaN \n", + "max NaN NaN \n", + "\n", + " Category Region Datetime Year ... \\\n", + "count 5780 5780 5780 5780.000000 ... \n", + "unique 857 111 5725 NaN ... \n", + "top Port Congestion China 12/6/2020 14:40 NaN ... \n", + "freq 710 820 3 NaN ... \n", + "mean NaN NaN NaN 2019.285294 ... \n", + "std NaN NaN NaN 0.746283 ... \n", + "min NaN NaN NaN 2017.000000 ... \n", + "25% NaN NaN NaN 2019.000000 ... \n", + "50% NaN NaN NaN 2019.000000 ... \n", + "75% NaN NaN NaN 2020.000000 ... \n", + "max NaN NaN NaN 2020.000000 ... \n", + "\n", + " IT EP NEW CSD RPE \\\n", + "count 3074.000000 3074.000000 3074.000000 3074.000000 3074.000000 \n", + "unique NaN NaN NaN NaN NaN \n", + "top NaN NaN NaN NaN NaN \n", + "freq NaN NaN NaN NaN NaN \n", + "mean 0.071243 0.008783 0.198113 0.007807 0.034483 \n", + "std 0.257272 0.093322 0.398643 0.088028 0.182495 \n", + "min 0.000000 0.000000 0.000000 0.000000 0.000000 \n", + "25% 0.000000 0.000000 0.000000 0.000000 0.000000 \n", + "50% 0.000000 0.000000 0.000000 0.000000 0.000000 \n", + "75% 0.000000 0.000000 0.000000 0.000000 0.000000 \n", + "max 1.000000 1.000000 1.000000 1.000000 1.000000 \n", + "\n", + " MN NM if_labeled Month Week \n", + "count 3074.000000 3074.000000 5780 5780.000000 5780.000000 \n", + "unique NaN NaN 2 NaN NaN \n", + "top NaN NaN False NaN NaN \n", + "freq NaN NaN 3074 NaN NaN \n", + "mean 0.061809 0.296031 NaN 7.038062 28.968512 \n", + "std 0.240847 0.456579 NaN 3.555936 15.614850 \n", + "min 0.000000 0.000000 NaN 1.000000 1.000000 \n", + "25% 0.000000 0.000000 NaN 4.000000 14.000000 \n", + "50% 0.000000 0.000000 NaN 8.000000 33.000000 \n", + "75% 0.000000 1.000000 NaN 10.000000 43.000000 \n", + "max 1.000000 1.000000 NaN 12.000000 53.000000 \n", + "\n", + "[11 rows x 52 columns]" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_description" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Missing ValuesPercentage (%)
Category 55780100.000000
Category 4577999.982699
Category 3567498.166090
Category 2514388.979239
VD270646.816609
VA270646.816609
MPT270646.816609
PC270646.816609
PDC270646.816609
PCA270646.816609
IT270646.816609
CDL270646.816609
EP270646.816609
NEW270646.816609
CSD270646.816609
RPE270646.816609
MN270646.816609
NM270646.816609
Category 1270646.816609
Original Category270646.816609
lat189932.854671
lon189932.854671
contains_port_info20.034602
found_ports20.034602
if_labeled00.000000
Month00.000000
Unnamed: 000.000000
no_punctuation_wordlist00.000000
Index00.000000
banned_words_but_still_maritime00.000000
Unnamed: 0.100.000000
Headline00.000000
Details00.000000
Severity00.000000
Category00.000000
Region00.000000
Datetime00.000000
Year00.000000
Cleaned_headline00.000000
Cleaned_description00.000000
Headline_Description00.000000
found_words00.000000
maritime_label00.000000
no_punctuation00.000000
stemmed_words00.000000
found_words200.000000
maritime_label200.000000
stemmed_string00.000000
found_words300.000000
maritime_label300.000000
all_found_words00.000000
Week00.000000
\n", + "
" + ], + "text/plain": [ + " Missing Values Percentage (%)\n", + "Category 5 5780 100.000000\n", + "Category 4 5779 99.982699\n", + "Category 3 5674 98.166090\n", + "Category 2 5143 88.979239\n", + "VD 2706 46.816609\n", + "VA 2706 46.816609\n", + "MPT 2706 46.816609\n", + "PC 2706 46.816609\n", + "PDC 2706 46.816609\n", + "PCA 2706 46.816609\n", + "IT 2706 46.816609\n", + "CDL 2706 46.816609\n", + "EP 2706 46.816609\n", + "NEW 2706 46.816609\n", + "CSD 2706 46.816609\n", + "RPE 2706 46.816609\n", + "MN 2706 46.816609\n", + "NM 2706 46.816609\n", + "Category 1 2706 46.816609\n", + "Original Category 2706 46.816609\n", + "lat 1899 32.854671\n", + "lon 1899 32.854671\n", + "contains_port_info 2 0.034602\n", + "found_ports 2 0.034602\n", + "if_labeled 0 0.000000\n", + "Month 0 0.000000\n", + "Unnamed: 0 0 0.000000\n", + "no_punctuation_wordlist 0 0.000000\n", + "Index 0 0.000000\n", + "banned_words_but_still_maritime 0 0.000000\n", + "Unnamed: 0.1 0 0.000000\n", + "Headline 0 0.000000\n", + "Details 0 0.000000\n", + "Severity 0 0.000000\n", + "Category 0 0.000000\n", + "Region 0 0.000000\n", + "Datetime 0 0.000000\n", + "Year 0 0.000000\n", + "Cleaned_headline 0 0.000000\n", + "Cleaned_description 0 0.000000\n", + "Headline_Description 0 0.000000\n", + "found_words 0 0.000000\n", + "maritime_label 0 0.000000\n", + "no_punctuation 0 0.000000\n", + "stemmed_words 0 0.000000\n", + "found_words2 0 0.000000\n", + "maritime_label2 0 0.000000\n", + "stemmed_string 0 0.000000\n", + "found_words3 0 0.000000\n", + "maritime_label3 0 0.000000\n", + "all_found_words 0 0.000000\n", + "Week 0 0.000000" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Calculate missing values count and percentage for each column\n", + "missing_values_count = data.isnull().sum()\n", + "missing_values_percentage = (missing_values_count / len(data)) * 100\n", + "\n", + "# Combine count and percentage into a dataframe for easier reading\n", + "missing_values_df = pd.DataFrame({\n", + " 'Missing Values': missing_values_count,\n", + " 'Percentage (%)': missing_values_percentage\n", + "})\n", + "\n", + "missing_values_df.sort_values(by='Missing Values', ascending=False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Index(['Unnamed: 0', 'Index', 'Unnamed: 0.1', 'Headline', 'Details',\n", + " 'Severity', 'Category', 'Region', 'Datetime', 'Year', 'lat', 'lon',\n", + " 'Cleaned_headline', 'Cleaned_description', 'Headline_Description',\n", + " 'found_words', 'maritime_label', 'no_punctuation', 'stemmed_words',\n", + " 'found_words2', 'maritime_label2', 'stemmed_string', 'found_words3',\n", + " 'maritime_label3', 'all_found_words', 'banned_words_but_still_maritime',\n", + " 'no_punctuation_wordlist', 'found_ports', 'contains_port_info',\n", + " 'if_labeled', 'Month', 'Week'],\n", + " dtype='object')\n" + ] + } + ], + "source": [ + "columns_to_keep = ['lat', 'lon']\n", + "columns_to_drop = missing_values_percentage[(missing_values_percentage > 30) & (~missing_values_percentage.index.isin(columns_to_keep))].index\n", + "\n", + "# Now drop the columns except for the ones we want to keep\n", + "data_cleaned = data.drop(columns=columns_to_drop)\n", + "\n", + "# Display the columns remaining after dropping\n", + "print(data_cleaned.columns)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Drop the specified columns\n", + "data_cleaned = data_cleaned.drop(columns=['Unnamed: 0', 'Index','Unnamed: 0.1'])\n", + "\n", + "# Create a new 'id' column starting from 1\n", + "data_cleaned['id'] = range(1, len(data_cleaned) + 1)\n", + "\n", + "# Optionally, if you want 'id' to be the first column, you can rearrange the columns like this:\n", + "cols = ['id'] + [col for col in data_cleaned.columns if col != 'id']\n", + "data_cleaned = data_cleaned[cols]\n", + "\n", + "# Now we can save the modified DataFrame to a CSV as previously described :))))) yayayyyy \n", + "data_cleaned.to_csv('cleaned_data.csv', index=False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "data_cleaned['Headline_Details'] = data_cleaned['Headline'] + \" \" + data_cleaned['Details']\n", + "\n", + "# Now, the DataFrame `data_cleaned` has a new column 'Headline_Details' combining the texts" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "data_cleaned.to_csv('cleaned_data.csv', index=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "data = data_cleaned" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Use the cleaned dataset for understanding key variables " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Understanding 'Region'\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Region\n", + "China 820\n", + "United States 721\n", + "Australia 378\n", + "United Kingdom 346\n", + "South Africa 257\n", + " ... \n", + "Guinea 1\n", + "Nicaragua 1\n", + "Norway 1\n", + "Djibouti 1\n", + "Lao People's Democratic Republic 1\n", + "Name: count, Length: 111, dtype: int64" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data['Region'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['Indonesia', 'China', 'Argentina', 'Philippines', 'United States',\n", + " 'United Kingdom', 'Taiwan', 'South Africa', 'Italy', 'Spain',\n", + " 'Brazil', 'France', 'Ecuador', 'Chile',\n", + " 'Venezuela (Bolivarian Republic of)', 'Mexico', 'Australia',\n", + " 'India', 'Singapore', 'Bangladesh', 'Greece', 'Colombia',\n", + " 'Republic of Korea', 'Saudi Arabia', 'Morocco', 'Germany',\n", + " 'Sri Lanka', 'Malta', 'Japan', 'Bolivia (Plurinational State of)',\n", + " 'Belgium', 'Canada', 'Malaysia', 'Denmark', 'New Zealand',\n", + " 'Pakistan', 'Nepal', 'Peru', 'United Arab Emirates', 'Netherlands',\n", + " 'Tunisia', 'Lithuania', 'Djibouti', 'Egypt', 'Algeria', 'Russia',\n", + " 'Thailand', 'Hong Kong', 'Panama', 'Viet Nam', 'Turkey', 'Brunei',\n", + " 'Iran (Islamic Republic of)', 'Jamaica', 'Uganda', 'Macau', 'Oman',\n", + " 'Puerto Rico', 'Costa Rica', 'Poland',\n", + " 'United Republic of Tanzania', 'Bahamas, The', 'Nigeria',\n", + " 'Ireland', 'Cambodia', 'Jordan', 'Sweden', 'Guinea', 'Honduras',\n", + " 'Togo', 'Lebanon', 'Yemen', 'Nicaragua', 'Mozambique', 'Norway',\n", + " 'Latvia', 'Qatar', 'Cuba', 'Kenya', 'Portugal', 'Uruguay', 'Iraq',\n", + " 'Afghanistan', 'Israel', \"Democratic People's Republic of Korea\",\n", + " 'Kuwait', 'Ghana', 'Albania', 'Libya', 'Offshore', 'El Salvador',\n", + " 'Gibraltar', 'Benin', 'Georgia', 'Dominican Republic',\n", + " 'Burkina Faso', 'Belarus', 'Paraguay', 'Seychelles', 'Uzbekistan',\n", + " 'Austria', 'Bahrain', 'Guernsey', 'Somalia', 'Trinidad and Tobago',\n", + " 'Angola', 'Guatemala', 'Madagascar', 'Cayman Islands',\n", + " 'Equatorial Guinea', \"Lao People's Democratic Republic\"],\n", + " dtype=object)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data['Region'].unique()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Understanding \"Category\"" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['Mine Workers Strike', 'Travel Warning', 'Port Congestion',\n", + " 'Bombing, Police Operations',\n", + " 'Roadway Closure / Disruption, Flooding, Severe Winds, Weather Advisory',\n", + " 'Cargo/Warehouse Theft', 'Tropical Cyclone / Storm', 'Storm',\n", + " 'Earthquake', 'Workplace Accident', 'Tornado', 'Industrial Action',\n", + " 'Public Safety / Security', 'Maritime Accident',\n", + " 'Port Disruption,Roadway Closure / Disruption',\n", + " 'Roadway Closure / Disruption, Vehicle Accident, Port Disruption',\n", + " 'Roadway Closure / Disruption, Cargo Disruption', 'Power Outage',\n", + " 'Production Halt', 'Port Closure', 'Miscellaneous Events',\n", + " 'Maritime Advisory, Port Closure',\n", + " 'Typhoon, Tropical Cyclone / Storm, Port Closure, Port Disruption',\n", + " 'Train Delays / Disruption', 'Maritime Advisory',\n", + " 'Protest / Riot, Miscellaneous Strikes',\n", + " 'Ground Transportation Advisory, Maritime Advisory',\n", + " 'Ground Transportation Advisory, Maritime Advisory, Death / Injury, Individuals in Focus',\n", + " 'Public Transportation Disruption', 'Protest / Riot',\n", + " 'Miscellaneous Strikes',\n", + " 'Port Congestion, Maritime Accident, Non-industrial Fire',\n", + " 'Miscellaneous Strikes, Ground Transportation Advisory',\n", + " 'Weather Advisory', 'Chemical Spill',\n", + " 'Roadway Closure / Disruption, Non-industrial Fire',\n", + " 'Roadway Closure / Disruption, Weather Advisory',\n", + " 'Roadway Closure / Disruption, Vehicle Accident',\n", + " 'Port Congestion, Maritime Accident',\n", + " 'Roadway Closure / Disruption, Vehicle Accident, Chemical Spill',\n", + " 'Flooding, Storm, Weather Advisory',\n", + " 'Severe Winds, Weather Advisory', 'Trade Regulation',\n", + " 'Organized Crime', 'Port Strike', 'Port Disruption',\n", + " 'Port Congestion,Port Disruption', 'Port Closure,Severe Winds',\n", + " 'Port Closure,Port Disruption',\n", + " 'Port Congestion,Port Disruption,Severe Winds',\n", + " 'Port Disruption,Severe Winds', 'Port Disruption,Cargo Disruption',\n", + " 'Maritime Accident, Typhoon', 'General Strike',\n", + " 'Civil Service Strike',\n", + " 'Port Congestion, Miscellaneous Events, Miscellaneous Strikes',\n", + " 'Non-industrial Fire', 'Port Congestion, Cargo Disruption',\n", + " 'Network Disruption, Port Disruption',\n", + " 'Ground Transportation Advisory,Civil Service Strike',\n", + " 'Protest / Riot, Roadway Closure / Disruption',\n", + " 'Roadway Closure / Disruption, Port Congestion, Miscellaneous Events, Severe Winds, Weather Advisory, Power Outage',\n", + " 'Severe Winds, Storm, Weather Advisory, Power Outage',\n", + " 'Maritime Accident,Port Disruption',\n", + " 'Cargo/Warehouse Theft, Organized Crime', 'Cargo Disruption',\n", + " 'Maritime Accident, Cargo Disruption',\n", + " 'Maritime Advisory, Cargo Disruption', 'Flooding',\n", + " 'Hazmat Response,Industrial Fire',\n", + " 'Customs Regulation, Regulatory Advisory, Trade Regulation',\n", + " 'Ground Transportation Advisory',\n", + " 'Port Congestion, Miscellaneous Events', 'Storm, Weather Advisory',\n", + " 'Roadway Closure / Disruption, Flooding, Weather Advisory, Landslide',\n", + " 'Fuel Disruption', 'Regulatory Advisory',\n", + " 'Maritime Advisory, Public Safety / Security',\n", + " 'Piracy,Port Disruption', 'Maritime Accident, Port Disruption',\n", + " 'Maritime Accident,Cargo Disruption',\n", + " 'Maritime Advisory,Cargo Disruption,Port Disruption',\n", + " 'Port Closure, Port Disruption',\n", + " 'Protest / Riot, Ground Transportation Advisory, Maritime Advisory',\n", + " 'Airline Incident / Crash',\n", + " 'Port Closure,Cargo Disruption,Port Disruption',\n", + " 'Weather Advisory, Port Disruption, Cargo Disruption',\n", + " 'Cargo Disruption, Industry Directives',\n", + " 'Roadway Closure / Disruption',\n", + " 'Regulatory Advisory, Maritime Advisory',\n", + " 'Maritime Advisory,Cargo Disruption', 'Vehicle Accident',\n", + " 'Security Advisory',\n", + " 'Public Holidays, Port Disruption, Customs Delay', 'Explosion',\n", + " 'Industrial Fire', 'Maritime Accident, Chemical Spill',\n", + " 'Train Delays / Disruption,Cargo Disruption,Port Disruption',\n", + " 'Port Disruption,Port Congestion',\n", + " 'Port Closure,Maritime Advisory', 'Port Closure,Weather Advisory',\n", + " 'Train Accident / Derailment', 'Public Health Advisory',\n", + " 'Death / Injury, Individuals in Focus',\n", + " 'Cargo Disruption,Roadway Closure / Disruption,Flooding',\n", + " 'Customs Delay, Cargo Disruption', 'Water / Sewage Disruption',\n", + " 'Ground Transportation Advisory, Storm, Weather Advisory',\n", + " 'Severe Winds, Storm', 'Customs Delay,Port Congestion',\n", + " 'Protest / Riot, Death / Injury, Individuals in Focus',\n", + " 'Ground Transportation Advisory, Death / Injury, Individuals in Focus',\n", + " 'Military Operations, Ground Transportation Advisory, Maritime Advisory, Kidnap / Detention, Individuals in Focus',\n", + " 'Protest / Riot, Ground Transportation Advisory, Death / Injury, Individuals in Focus',\n", + " 'Protest / Riot, Kidnap / Detention, Individuals in Focus',\n", + " 'Civil Unrest Advisory, Miscellaneous Events, Ground Transportation Advisory',\n", + " 'Protest / Riot, Ground Transportation Advisory',\n", + " 'Military Operations',\n", + " 'Roadway Closure / Disruption, Ground Transportation Advisory, Public Safety / Security',\n", + " 'Military Operations, Ground Transportation Advisory, Aviation Advisory, Maritime Advisory',\n", + " 'Military Operations, Protest / Riot, Death / Injury, Individuals in Focus',\n", + " 'Train Accident / Derailment,Cargo Disruption',\n", + " 'Roadway Closure / Disruption, Public Safety / Security',\n", + " 'Weather Advisory, Train Delays / Disruption',\n", + " 'Non-industrial Fire, Train Delays / Disruption',\n", + " 'Typhoon, Port Closure, Port Disruption, Maritime Advisory, Flight Delays / Cancellations, Aviation Advisory',\n", + " 'Customs Delay', 'Piracy',\n", + " 'Roadway Closure / Disruption, Ground Transportation Advisory, Cargo Disruption',\n", + " 'Trade Regulation, Public Safety / Security',\n", + " 'Customs Delay,Customs Regulation',\n", + " 'Industrial Action,General Strike',\n", + " 'Port Disruption, Cargo Disruption, Maritime Advisory',\n", + " 'Public Safety / Security, Public Health Advisory',\n", + " 'Customs Regulation,Regulatory Advisory', 'Hurricane',\n", + " 'Cargo/Warehouse Theft, Organized Crime, Public Safety / Security',\n", + " 'Roadway Closure / Disruption, Political Info / Event',\n", + " 'Chemical Spill, Port Disruption', 'Port Closure,Port Congestion',\n", + " 'Power Outage,Storm',\n", + " 'Roadway Closure / Disruption, Vehicle Accident, Non-industrial Fire',\n", + " 'Public Holidays', 'Shooting, Public Safety / Security',\n", + " 'Roadway Closure / Disruption, Flooding, Storm',\n", + " 'Earthquake, Weather Advisory', 'Weather Advisory, Storm',\n", + " 'Port Disruption, Network Disruption',\n", + " 'Port Closure, Tropical Cyclone / Storm',\n", + " 'Cargo Disruption, Port Disruption',\n", + " 'Cargo Disruption, Port Disruption, Port Congestion',\n", + " 'Port Disruption,Port Closure', 'Port Congestion,Port Strike',\n", + " 'Port Closure,Cargo Disruption',\n", + " 'Port Congestion, Port Disruption, Weather Advisory, Severe Winds',\n", + " 'Port Disruption,Storm',\n", + " 'Tropical Cyclone / Storm, Severe Winds, Port Disruption, Cargo Disruption',\n", + " 'Port Disruption,Network Disruption',\n", + " 'Roadway Closure / Disruption,Protest / Riot',\n", + " 'Ground Transportation Advisory, Roadway Closure / Disruption',\n", + " 'Port Congestion,Roadway Closure / Disruption,Port Disruption',\n", + " 'Cargo/Warehouse Theft, Piracy, Robbery',\n", + " 'Vehicle Accident, Train Accident / Derailment, Train Delays / Disruption',\n", + " 'Waterway closure / Disruption,Maritime Advisory',\n", + " 'Maritime Advisory, Political Info / Event',\n", + " 'Roadway Closure / Disruption,General Strike',\n", + " 'Train Delays / Disruption, Cargo Disruption',\n", + " 'Port Disruption, Severe Winds',\n", + " 'Port Disruption,Port Closure,Severe Winds',\n", + " 'Waterway Closure / Disruption,Port Disruption',\n", + " 'Cargo Transportation Strike',\n", + " 'Waterway Closure / Disruption, Maritime Advisory',\n", + " 'Protest / Riot, Roadway Closure / Disruption, Miscellaneous Strikes',\n", + " 'Miscellaneous Strikes, Train Delays / Disruption',\n", + " 'Port Congestion, Miscellaneous Events, Public Safety / Security, Non-industrial Fire',\n", + " 'Organized Crime,Cargo theft',\n", + " 'Roadway Closure / Disruption,Severe Winds',\n", + " 'Port Closure,Cargo Disruption,Severe Winds',\n", + " 'Port Disruption,Maritime Advisory,Severe Winds',\n", + " 'Port Closure,Severe Winds,Typhoon',\n", + " 'Barge Accident,Waterway closure / Disruption',\n", + " 'Port Disruption,Maritime Advisory',\n", + " 'Port Congestion, Port Disruption, Roadway Closure / Disruption',\n", + " 'Train Delays / Disruption, Roadway Closure / Disruption',\n", + " 'Cargo Disruption, Maritime Advisory, Port Disruption',\n", + " 'Ground Transportation Advisory, Port Disruption, Cargo Disruption',\n", + " 'Typhoon', 'Barge Accident',\n", + " 'Roadway Closure / Disruption, Vehicle Accident, Public Safety / Security',\n", + " 'Port Congestion, Maritime Accident, Miscellaneous Events',\n", + " 'Train Accident / Derailment, Train Delays / Disruption',\n", + " 'Public Safety / Security, Train Accident / Derailment, Train Delays / Disruption',\n", + " 'Public Safety / Security, Train Delays / Disruption',\n", + " 'Ground Transportation Advisory, Train Delays / Disruption',\n", + " 'Port Congestion, Miscellaneous Events, Ground Transportation Advisory',\n", + " 'Roadway Closure / Disruption, Flooding, Weather Advisory, Train Delays / Disruption',\n", + " 'Flooding, Severe Winds, Weather Advisory',\n", + " 'Roadway Closure / Disruption, Non-industrial Fire, Public Health Advisory',\n", + " 'Roadway Closure / Disruption, Shooting, Public Safety / Security',\n", + " 'Flight Delays / Cancellations, Weather Advisory',\n", + " 'Roadway Closure / Disruption, Public Safety / Security, Non-industrial Fire',\n", + " 'Roadway Closure / Disruption, Public Safety / Security, Non-industrial Fire, Train Delays / Disruption',\n", + " 'Storm, Public Health Advisory',\n", + " 'Roadway Closure / Disruption, Flooding, Severe Winds, Weather Advisory, Train Delays / Disruption',\n", + " 'Roadway Closure / Disruption, Flooding, Severe Winds, Weather Advisory, Storm, Train Delays / Disruption',\n", + " 'Flight Delays / Cancellations, Port Congestion, Miscellaneous Events, Weather Advisory, Storm, Power Outage',\n", + " 'Ground Transportation Advisory, Public Safety / Security',\n", + " 'Ground Transportation Advisory, Flooding, Weather Advisory',\n", + " 'Severe Winds, Storm, Power Outage', 'Storm, Power Outage',\n", + " 'Ground Transportation Advisory, Storm',\n", + " 'Protest / Riot, Roadway Closure / Disruption, Fuel Disruption, Train Delays / Disruption',\n", + " 'Flight Delays / Cancellations, Public Safety / Security, Severe Winds, Storm',\n", + " 'Roadway Closure / Disruption, Flooding, Severe Winds, Storm',\n", + " 'Protest / Riot, Political Info / Event, Ground Transportation Advisory',\n", + " 'Port Congestion, Maritime Accident, Public Health Advisory',\n", + " 'Roadway Closure / Disruption, Storm, Train Delays / Disruption, Public Health Advisory',\n", + " 'Roadway Closure / Disruption, Ground Transportation Advisory',\n", + " 'Ground Transportation Advisory, Hurricane, Weather Advisory',\n", + " 'Protest / Riot, Roadway Closure / Disruption, Public Safety / Security',\n", + " 'Ground Transportation Advisory, Public Safety / Security, Hurricane, Weather Advisory',\n", + " 'Ground Transportation Advisory, Public Safety / Security, Hurricane',\n", + " 'Roadway Closure / Disruption, Flooding, Weather Advisory, Power Outage',\n", + " 'Severe Winds, Weather Advisory, Public Health Advisory',\n", + " 'Roadway Closure / Disruption, Flooding, Storm, Weather Advisory, Power Outage',\n", + " 'Public Safety / Security, Flooding, Weather Advisory, Storm',\n", + " 'Chemical Spill, Public Health Advisory', 'Plant Closure',\n", + " 'Cargo Transportation Strike,Port Disruption',\n", + " 'Port Congestion,Port Closure',\n", + " 'Port Disruption, Maritime Advisory',\n", + " 'Port Congestion, Port Disruption, Weather Advisory',\n", + " 'Port Disruption, Roadway Closure / Disruption',\n", + " 'Port Disruption, Port Congestion, Typhoon, Cargo Disruption',\n", + " 'Port Disruption, Port Congestion',\n", + " 'Port Disruption, Roadway Closure / Disruption, Non-industrial Fire',\n", + " 'Port Closure,Port Disruption,Severe Winds',\n", + " 'Port Disruption,Protest / Riot,Roadway Closure / Disruption',\n", + " 'Maritime Advisory, Regulatory Advisory',\n", + " 'Port Congestion, Port Disruption, Cargo Disruption',\n", + " 'Port Disruption,Weather Advisory',\n", + " 'Port Disruption,Industrial Action',\n", + " 'Industrial Fire, Chemical Spill',\n", + " 'Maritime Accident,Waterway Closure / Disruption',\n", + " 'Weather Advisory, Port Congestion', 'Port Disruption, Ransomware',\n", + " 'Maritime Advisory, Port Congestion, Severe Winds',\n", + " 'Port Closure, Port Disruption, Cargo Disruption',\n", + " 'Port Disruption, Cargo Disruption, Severe Winds',\n", + " 'Cargo Transportation Strike,Cargo Disruption,Customs Delay,Port Strike',\n", + " 'Port Closure, Tropical Cyclone / Storm, Typhoon',\n", + " 'Bridge Collapse, Train Delays / Disruption, Roadway Closure / Disruption, Port Closure, Port Disruption',\n", + " 'Port Closure, Cargo Disruption',\n", + " 'Miscellaneous Strikes, Public Transportation Disruption',\n", + " 'Cargo Transportation Strike,Port Strike,Port Congestion',\n", + " 'Trade Regulation, Customs Delay, Border Closure / Delay',\n", + " 'Port Disruption,Power Outage',\n", + " 'Port Disruption, Tropical Cyclone / Storm',\n", + " 'Port Closure, Port Congestion',\n", + " 'Trade Regulation, Cargo Disruption', 'Robbery',\n", + " 'Bomb Detonation / Explosion, Public Safety / Security',\n", + " 'Roadway Closure / Disruption, Shooting',\n", + " 'Bomb Detonation / Explosion, Roadway Closure / Disruption',\n", + " 'Roadway Closure / Disruption, Flooding, Weather Advisory',\n", + " 'Weather Advisory, Power Outage',\n", + " 'Roadway Closure / Disruption, Weather Advisory, Storm',\n", + " 'Roadway Closure / Disruption, Public Safety / Security, Train Accident / Derailment',\n", + " 'Flooding, Storm, Power Outage',\n", + " 'Chemical Spill, Non-industrial Fire',\n", + " 'Roadway Closure / Disruption, Train Accident / Derailment, Train Delays / Disruption',\n", + " 'Public Safety / Security, Robbery',\n", + " 'Protest / Riot, Ground Transportation Advisory, Maritime Advisory, Death / Injury, Individuals in Focus',\n", + " 'Cargo Disruption, Maritime Advisory, Tropical Cyclone / Storm',\n", + " 'Port Congestion,Port Disruption,Customs Regulation',\n", + " 'Ground Transportation Advisory,Weather Advisory',\n", + " 'Workplace Accident,Maritime Accident',\n", + " 'Workplace Accident, Maritime Accident',\n", + " 'Maritime Advisory,Port Strike',\n", + " 'Cargo Disruption, Public Safety / Security',\n", + " 'Miscellaneous Events, Maritime Advisory',\n", + " 'Roadway Closure / Disruption,Cargo Disruption',\n", + " 'Port Closure,Protest / Riot',\n", + " 'Cargo/Warehouse Theft, Public Safety / Security',\n", + " 'Power Outage, Roadway Closure / Disruption, Weather Advisory',\n", + " 'Public Safety / Security, Roadway Closure / Disruption, Vehicle Accident',\n", + " 'Protest / Riot, Public Safety / Security, Roadway Closure / Disruption',\n", + " 'Public Safety / Security, Hazmat Response, Public Health Advisory, Roadway Closure / Disruption',\n", + " 'Flight Delays / Cancellations, Roadway Closure / Disruption, Weather Advisory',\n", + " 'Port Disruption, Miscellaneous Strikes',\n", + " 'Chemical Spill, Public Safety / Security', 'Power Outage, Storm',\n", + " 'Power Outage, Severe Winds', 'Severe Winds',\n", + " 'Public Safety / Security, Port Disruption',\n", + " 'Power Outage, Weather Advisory, Wildfire',\n", + " 'Port Congestion, Miscellaneous Events, Miscellaneous Strikes, Ground Transportation Advisory',\n", + " 'Bomb Detonation / Explosion, Hazmat Response',\n", + " 'Protest / Riot, Political Info / Event',\n", + " 'Non-industrial Fire, Roadway Closure / Disruption',\n", + " 'Customs Regulation', 'Industrial zone shutdown',\n", + " 'Port Congestion,Cargo Disruption',\n", + " 'Port Congestion, Port Closure',\n", + " 'Protest / Riot, Train Delays / Disruption, Roadway Closure / Disruption, Miscellaneous Strikes',\n", + " 'Port Congestion, Miscellaneous Events, Public Health Advisory',\n", + " 'Public Safety / Security, Non-industrial Fire',\n", + " 'Chemical Spill, Train Accident / Derailment, Train Delays / Disruption',\n", + " 'Train Accident / Derailment, Roadway Closure / Disruption',\n", + " 'Public Safety / Security, Roadway Closure / Disruption, Shooting',\n", + " 'Ground Transportation Advisory, Weather Advisory',\n", + " 'Public Safety / Security, Roadway Closure / Disruption',\n", + " 'Port Congestion, Miscellaneous Events, Weather Advisory, Non-industrial Fire',\n", + " 'Cargo Disruption,Maritime Advisory',\n", + " 'Maritime Accident,Barge Accident',\n", + " 'Cargo Disruption,Port Disruption',\n", + " 'Cargo Transportation Strike,Port Strike',\n", + " 'Public Safety / Security, Maritime Accident',\n", + " 'Waterway Closure / Disruption',\n", + " 'Chemical Spill,Industrial Fire,Production Halt',\n", + " 'Chemical Spill, Roadway Closure / Disruption, Port Disruption, Public Safety / Security',\n", + " 'Trade Restrictions', 'Flooding, Roadway Closure / Disruption',\n", + " 'Individuals in Focus', 'Port Disruption,Regulatory Advisory',\n", + " 'Structure Collapse', 'Port Congestion,Maritime Advisory',\n", + " 'Cargo Disruption,Maritime Accident',\n", + " 'Fuel Disruption,Industrial Action',\n", + " 'Industrial Action, Port Congestion, Port Disruption',\n", + " 'Maritime Advisory,Weather Advisory',\n", + " 'Regulatory Advisory, Miscellaneous Events, Customs Regulation',\n", + " 'Security Advisory, Ground Transportation Advisory, Death / Injury, Individuals in Focus',\n", + " 'Customs Regulation,Trade Regulation', 'Data breach',\n", + " 'Vehicle Accident, Roadway Closure / Disruption',\n", + " 'Port Disruption,Protest / Riot',\n", + " 'Port Congestion, Port Closure, Miscellaneous Events, Severe Winds, Weather Advisory',\n", + " 'Port Disruption, Weather Advisory',\n", + " 'Public Safety / Security, Customs Regulation',\n", + " 'Industrial Fire,Port Disruption',\n", + " 'Maritime Accident, Non-industrial Fire',\n", + " 'Flight Delays / Cancellations',\n", + " 'Flooding, Airport Accident / Closure',\n", + " 'Train Delays / Disruption, Miscellaneous Strikes',\n", + " 'General Strike, Miscellaneous Strikes',\n", + " 'Train Delays / Disruption, Weather Advisory',\n", + " 'Train Delays / Disruption,Cargo Disruption',\n", + " 'Port Disruption, Customs Delay',\n", + " 'Public Safety / Security, Weather Advisory',\n", + " 'Military Operations, Ground Transportation Advisory',\n", + " 'Bomb Detonation / Explosion, Port Congestion, Maritime Accident, Miscellaneous Events, Non-industrial Fire',\n", + " 'Protest / Riot, Miscellaneous Strikes, Ground Transportation Advisory',\n", + " 'Hazmat Response',\n", + " 'Roadway Closure / Disruption,Maritime Accident',\n", + " 'Port Strike,Port Disruption',\n", + " 'Kidnap / Detention, Individuals in Focus',\n", + " 'Protest / Riot, Ground Transportation Advisory, Miscellaneous Strikes',\n", + " 'Tropical Cyclone / Storm, Weather Advisory',\n", + " 'Kidnap / Detention, Piracy',\n", + " 'Miscellaneous Events, Individuals in Focus',\n", + " 'Public Safety / Security, Flooding, Roadway Closure / Disruption',\n", + " 'Non-industrial Fire, Port Disruption',\n", + " 'Non-industrial Fire, Maritime Accident',\n", + " 'Roadway Closure / Disruption,Port Disruption',\n", + " 'Explosion, Chemical Spill',\n", + " 'Military Operations, Security Advisory, Ground Transportation Advisory, Maritime Advisory',\n", + " 'Military Operations, Security Advisory, Ground Transportation Advisory, Maritime Advisory, Death / Injury, Individuals in Focus',\n", + " 'Force Majeure',\n", + " 'Public Safety / Security, Flooding, Roadway Closure / Disruption, Weather Advisory',\n", + " 'Public Health Advisory, Military Operations',\n", + " 'Bomb Detonation / Explosion, Non-industrial Fire',\n", + " 'Port Disruption, Non-industrial Fire',\n", + " 'Organized Crime,Cargo Disruption',\n", + " 'Train Accident / Derailment, Train Delays / Disruption, Roadway Closure / Disruption, Vehicle Accident',\n", + " 'Organized Crime, Maritime Advisory, Cargo/Warehouse Theft',\n", + " 'Death / Injury',\n", + " 'Individuals in Focus, Maritime Advisory, Protest / Riot',\n", + " 'Organized Crime, Kidnap / Detention, Ground Transportation Advisory, Individuals in Focus, Cargo/Warehouse Theft',\n", + " 'Terror Attack',\n", + " 'Organized Crime, Security Advisory, Individuals in Focus, Kidnap / Detention, Maritime Advisory, Cargo/Warehouse Theft',\n", + " 'Organized Crime, Security Advisory, Ground Transportation Advisory',\n", + " 'Chemical Spill, Non-industrial Fire, Train Accident / Derailment',\n", + " 'Network Disruption', 'Truck Driving Ban',\n", + " 'Customs Regulation, Public Health Advisory', 'Telecom Outage',\n", + " 'Cargo Disruption, Port Strike, Maritime Advisory',\n", + " 'Energy Sector Strike',\n", + " 'Cargo Disruption, Roadway Closure / Disruption, Maritime Advisory',\n", + " 'Port Disruption,Cargo Disruption,Organized Crime',\n", + " 'Chemical Spill, Non-industrial Fire, Roadway Closure / Disruption, Vehicle Accident',\n", + " 'Regulatory Advisory,Industry Directives',\n", + " 'Cargo Transportation Strike,Protest / Riot',\n", + " 'Public Health Advisory, Roadway Closure / Disruption',\n", + " 'Public Safety / Security, Non-industrial Fire, Roadway Closure / Disruption',\n", + " 'Earthquake, Public Safety / Security',\n", + " 'Flooding, Landslide, Severe Winds, Storm',\n", + " 'Flight Delays / Cancellations, Public Safety / Security',\n", + " 'Protest / Riot, Public Safety / Security',\n", + " 'Organized Crime, Cargo/Warehouse Theft',\n", + " 'Organized Crime, Cargo/Warehouse Theft, Public Safety / Security',\n", + " 'Maritime Advisory, Port Disruption',\n", + " 'Cargo Disruption,Weather Advisory',\n", + " 'Industrial Fire,Roadway Closure / Disruption',\n", + " 'Power Outage,Port Disruption',\n", + " 'Military Operations, Protest / Riot, Death / Injury, Miscellaneous Events, Individuals in Focus',\n", + " 'Train Delays / Disruption,Protest / Riot',\n", + " 'Roadway Closure / Disruption,Weather Advisory',\n", + " 'Port Disruption, Severe Winds, Ground Transportation Advisory',\n", + " 'Public Safety / Security, Non-industrial Fire, Maritime Accident',\n", + " 'Waterway Closure / Disruption, Cargo Disruption',\n", + " 'Bomb Detonation / Explosion',\n", + " 'Port Disruption,Train Delays / Disruption,Severe Winds',\n", + " 'Production Halt,Earthquake',\n", + " 'Maritime Accident, Chemical Spill, Hazmat Response',\n", + " 'Industry Directives',\n", + " 'Flooding, Severe Winds, Storm, Weather Advisory',\n", + " 'Protest / Riot,Roadway Closure / Disruption',\n", + " 'Train Delays / Disruption,Industrial Action',\n", + " 'Flooding, Public Health Advisory, Ground Transportation Advisory',\n", + " 'Flooding, Landslide, Roadway Closure / Disruption',\n", + " 'Protest / Riot, Public Safety / Security, Shooting, Miscellaneous Strikes',\n", + " 'Industrial Action,Port Disruption',\n", + " 'Port Strike,Cargo Disruption', 'Network Disruption,Customs Delay',\n", + " 'Civil Unrest Advisory',\n", + " 'Train Accident / Derailment, Chemical Spill',\n", + " 'Regulatory Advisory,Maritime Advisory', 'Kidnap / Detention',\n", + " 'Chemical Spill, Hazmat Response, Maritime Accident',\n", + " 'Vehicle Accident, Public Safety / Security',\n", + " 'Cargo Disruption,Vehicle Accident,Port Disruption',\n", + " 'Protest / Riot,Port Disruption',\n", + " 'Roadway Closure / Disruption,Protest / Riot,Cargo Transportation Strike',\n", + " 'Port Strike, Cargo Disruption',\n", + " 'Storm, Ground Transportation Advisory',\n", + " 'Robbery, Cargo/Warehouse Theft',\n", + " 'Regulatory Advisory,Cargo Disruption,Customs Regulation',\n", + " 'Airline Incident / Crash, Flight Delays / Cancellations',\n", + " 'Flight Delays / Cancellations, Non-industrial Fire, Train Delays / Disruption',\n", + " 'Protest / Riot, Port Disruption, Roadway Closure / Disruption',\n", + " 'Flight Delays / Cancellations, Train Delays / Disruption',\n", + " 'Protest / Riot, Roadway Closure / Disruption, Ground Transportation Advisory',\n", + " 'Train Delays / Disruption, Vehicle Accident',\n", + " 'Non-industrial Fire, Roadway Closure / Disruption, Vehicle Accident',\n", + " 'Public Safety / Security, Wildfire', 'Wildfire',\n", + " 'Public Safety / Security, Non-industrial Fire, Public Health Advisory',\n", + " 'Public Health Advisory, Port Disruption, Roadway Closure / Disruption, Miscellaneous Strikes, Weather Advisory, Wildfire',\n", + " 'Flight Delays / Cancellations, Public Safety / Security, Wildfire',\n", + " 'Flooding, Power Outage, Storm, Weather Advisory',\n", + " 'Tropical Cyclone / Storm, Power Outage, Severe Winds',\n", + " 'Flooding, Public Health Advisory, Hurricane, Severe Winds, Weather Advisory',\n", + " 'Flooding, Hurricane, Power Outage, Severe Winds, Ground Transportation Advisory',\n", + " 'Tropical Cyclone / Storm, Port Disruption',\n", + " 'Tropical Cyclone / Storm, Port Disruption, Storm',\n", + " 'Power Outage, Weather Advisory',\n", + " 'Chemical Spill, Bomb Detonation / Explosion',\n", + " 'Flooding, Power Outage, Ground Transportation Advisory',\n", + " 'Flight Delays / Cancellations, Protest / Riot, Non-industrial Fire, Public Safety / Security, Roadway Closure / Disruption, Miscellaneous Strikes',\n", + " 'Protest / Riot, Roadway Closure / Disruption, Miscellaneous Strikes, Ground Transportation Advisory',\n", + " 'Political Info / Event',\n", + " 'Protest / Riot, Public Safety / Security, Roadway Closure / Disruption, Ground Transportation Advisory',\n", + " 'Protest / Riot, Non-industrial Fire, Public Safety / Security, Train Delays / Disruption, Roadway Closure / Disruption, Shooting',\n", + " 'Protest / Riot, Non-industrial Fire, Public Safety / Security',\n", + " 'Flight Delays / Cancellations, Protest / Riot, Public Safety / Security, Train Delays / Disruption, Roadway Closure / Disruption, Ground Transportation Advisory',\n", + " 'Protest / Riot, Public Safety / Security, Train Delays / Disruption, Roadway Closure / Disruption, Miscellaneous Strikes',\n", + " 'Flight Delays / Cancellations, Public Safety / Security, Flooding, Port Disruption, Power Outage, Train Delays / Disruption, Roadway Closure / Disruption, Severe Winds, Storm',\n", + " 'Public Safety / Security, Storm, Weather Advisory',\n", + " 'Public Safety / Security, Flooding, Landslide, Roadway Closure / Disruption, Weather Advisory',\n", + " 'Earthquake, Public Safety / Security, Public Health Advisory',\n", + " 'Port Disruption, Severe Winds, Weather Advisory',\n", + " 'Train Delays / Disruption, Miscellaneous Strikes, Ground Transportation Advisory',\n", + " 'Protest / Riot, Roadway Closure / Disruption, Miscellaneous Strikes, Public Safety / Security',\n", + " 'Protest / Riot, Security Advisory, Political Info / Event, Roadway Closure / Disruption, Miscellaneous Strikes',\n", + " 'Public Safety / Security, Ground Transportation Advisory',\n", + " 'Power Outage, Ground Transportation Advisory',\n", + " 'Earthquake, Train Delays / Disruption, Roadway Closure / Disruption',\n", + " 'Hazmat Response, Train Delays / Disruption',\n", + " 'Flight Delays / Cancellations, Train Accident / Derailment, Train Delays / Disruption',\n", + " 'Flooding, Roadway Closure / Disruption, Weather Advisory',\n", + " 'Airport Accident / Closure, Public Safety / Security, Hurricane, Severe Winds, Ground Transportation Advisory, Weather Advisory',\n", + " 'Flooding, Hurricane, Power Outage, Severe Winds, Weather Advisory',\n", + " 'Public Safety / Security, Flooding, Power Outage, Storm, Weather Advisory',\n", + " 'Public Safety / Security, Maritime Advisory, Robbery',\n", + " 'Port Closure,Roadway Closure / Disruption',\n", + " 'Cargo Disruption,Regulatory Advisory',\n", + " 'Customs Delay,Port Disruption',\n", + " 'Train Delays / Disruption,Port Disruption',\n", + " 'Flooding,Weather Advisory', 'Port Strike,Port Congestion',\n", + " 'Weather Advisory,Roadway Closure / Disruption',\n", + " 'Port Disruption, Port Strike',\n", + " 'Port Strike,Roadway Closure / Disruption,Port Congestion',\n", + " 'Public Safety / Security, Ground Transportation Advisory, Wildfire',\n", + " 'General Strike,Roadway Closure / Disruption',\n", + " 'Border Closure / Delay,Roadway Closure / Disruption',\n", + " 'Roadway Closure / Disruption, Protest / Riot',\n", + " 'Port Congestion,Weather Advisory',\n", + " 'Maritime Advisory,Port Congestion',\n", + " 'Protest / Riot,Industrial Action,Port Strike,Port Disruption',\n", + " 'Port Strike,Customs Delay,General Strike',\n", + " 'Customs Delay,Civil Service Strike,Port Congestion',\n", + " 'Industrial Action, Miscellaneous Strikes',\n", + " 'Industrial Action,Plant Closure', 'Typhoon,Landslide,Flooding',\n", + " 'Roadway Closure / Disruption,Protest / Riot,Maritime Advisory,Port Disruption',\n", + " 'Hurricane, Public Safety / Security',\n", + " 'Port Disruption,Port Closure,Port Congestion',\n", + " 'Aviation Advisory,Ground Transportation Advisory',\n", + " 'Customs Regulation,Port Congestion',\n", + " 'Industrial Fire, Hazmat Response',\n", + " 'Port Strike, Miscellaneous Strikes',\n", + " 'Port Congestion,Waterway Closure / Disruption,Maritime Advisory',\n", + " 'Miscellaneous Strikes, Customs Delay, Civil Service Strike',\n", + " 'Miscellaneous Strikes, Industrial Action',\n", + " 'Train Accident / Derailment,Train Delays / Disruption',\n", + " 'Industrial Action,Protest / Riot,Cargo Transportation Strike',\n", + " 'Robbery, Public Safety / Security, Roadway Closure / Disruption',\n", + " 'Non-industrial Fire, Public Safety / Security',\n", + " 'Public Safety / Security, Flooding',\n", + " 'Chemical Spill, Bomb Detonation / Explosion, Non-industrial Fire',\n", + " 'Public Safety / Security, Security Advisory, Roadway Closure / Disruption, Vehicle Accident',\n", + " 'Shooting', 'Roadway Closure / Disruption, Miscellaneous Strikes',\n", + " 'Blizzard, Weather Advisory',\n", + " 'Chemical Spill, Roadway Closure / Disruption',\n", + " 'Severe Winds, Storm, Weather Advisory',\n", + " 'Power Outage, Roadway Closure / Disruption, Vehicle Accident',\n", + " 'Maritime Accident, Roadway Closure / Disruption',\n", + " 'Roadway Closure / Disruption, Storm, Weather Advisory',\n", + " 'Protest / Riot, Ground Transportation Advisory, Aviation Advisory, Maritime Advisory, Miscellaneous Events, Individuals in Focus',\n", + " 'Flooding, Roadway Closure / Disruption, Storm, Weather Advisory',\n", + " 'Production Halt, Cargo Disruption, Port Congestion, Public Holidays',\n", + " 'Public Health Advisory, Ground Transportation Advisory, Security Advisory',\n", + " 'Outbreak of disease', 'Maritime Advisory, Outbreak of disease',\n", + " 'Individuals in Focus, Political Info / Event, Miscellaneous Events',\n", + " 'Miscellaneous Events, Political Info / Event, Ground Transportation Advisory',\n", + " 'Public Safety / Security, Security Advisory',\n", + " 'Roadway Closure / Disruption, Cargo Transportation Strike',\n", + " 'Maritime Advisory, Political Info / Event, Miscellaneous Events',\n", + " 'Regulatory Advisory, Ground Transportation Advisory, Miscellaneous Strikes, Maritime Advisory',\n", + " 'Weather Advisory, Ground Transportation Advisory, Flooding',\n", + " 'Tropical Cyclone / Storm, Severe Winds, Weather Advisory',\n", + " 'Maritime Advisory, Waterway Closure / Disruption',\n", + " 'Miscellaneous Events, Political Info / Event, Maritime Advisory',\n", + " 'Maritime Advisory, Political Info / Event, Public Safety / Security, Military Operations',\n", + " 'Military Operations, Political Info / Event, Ground Transportation Advisory',\n", + " 'Insolvency', 'Protest / Riot, Port Disruption',\n", + " 'Public Health Advisory, Ground Transportation Advisory, Public Safety / Security, Security Advisory',\n", + " 'Ground Transportation Advisory, Vehicle Accident, Port Disruption',\n", + " 'Political Info / Event, Protest / Riot',\n", + " 'Public Safety / Security, Maritime Advisory, Death / Injury, Individuals in Focus, Robbery',\n", + " 'Maritime Advisory, Political Info / Event, Miscellaneous Events, Public Safety / Security',\n", + " 'Maritime Advisory, Political Info / Event, Miscellaneous Events, Individuals in Focus, Public Safety / Security',\n", + " 'Public Safety / Security, Maritime Advisory',\n", + " 'Regulatory Advisory, Ground Transportation Advisory, Public Health Advisory, Security Advisory',\n", + " 'Hazmat Response, Ground Transportation Advisory, Network Disruption',\n", + " 'Port Congestion, Port Disruption',\n", + " 'Regulatory Advisory, Public Health Advisory, Security Advisory',\n", + " 'Hazmat Response, Public Safety / Security',\n", + " 'Airport Accident / Closure, Aviation Advisory, Explosion',\n", + " 'Maritime Accident, Outbreak of disease',\n", + " 'Cargo Disruption, Outbreak of disease',\n", + " 'Cargo Disruption, Train Delays / Disruption',\n", + " 'Cargo Disruption, Port Strike, Port Disruption',\n", + " 'Chemical Spill, Train Delays / Disruption',\n", + " 'Kidnap / Detention, Protest / Riot, Individuals in Focus',\n", + " 'Regulatory Advisory, Political Info / Event',\n", + " 'Military Operations, Political Info / Event, Protest / Riot',\n", + " 'Weather Advisory, Ground Transportation Advisory, Network Disruption',\n", + " 'Public Safety / Security, Network Disruption, Maritime Advisory',\n", + " 'Maritime Accident, Port Closure',\n", + " 'Port Congestion, Cargo Disruption, Port Disruption',\n", + " 'Regulatory Advisory, Political Info / Event, Protest / Riot',\n", + " 'Cargo Disruption, Outbreak of disease, Maritime Advisory',\n", + " 'Port Disruption, Maritime Advisory, Severe Winds', 'Ransomware',\n", + " 'Port Congestion, Outbreak of disease',\n", + " 'Public Health Advisory, Security Advisory',\n", + " 'Maritime Advisory, Ground Transportation Advisory, Public Health Advisory, Security Advisory',\n", + " 'Port Congestion, Regulatory Advisory',\n", + " 'Regulatory Advisory, Political Info / Event, Ground Transportation Advisory, Public Health Advisory, Security Advisory',\n", + " 'Outbreak of disease, Ground Transportation Advisory, Port Disruption',\n", + " 'Vehicle Accident, Non-industrial Fire, Roadway Closure / Disruption',\n", + " 'Outbreak of disease, Maritime Advisory',\n", + " 'Hazmat Response, Roadway Closure / Disruption',\n", + " 'Public Safety / Security, Hazmat Response',\n", + " 'Outbreak of disease, Port Disruption',\n", + " 'Cargo Disruption, Cargo Transportation Strike, Port Disruption',\n", + " 'Public Safety / Security, Cargo Disruption',\n", + " 'Production Halt, Cargo Disruption',\n", + " 'Public Health Advisory, Severe Winds',\n", + " 'Roadway Closure / Disruption, Port Congestion',\n", + " 'Port Congestion, Customs Delay, Customs Regulation',\n", + " 'Port Disruption, Port Closure',\n", + " 'Regulatory Advisory, Political Info / Event, Ground Transportation Advisory, Public Health Advisory, Network Disruption, Weather Advisory',\n", + " 'Regulatory Advisory, Ground Transportation Advisory',\n", + " 'Public Safety / Security, Shooting, Roadway Closure / Disruption',\n", + " 'Flooding, Ground Transportation Advisory, Power Outage',\n", + " 'Roadway Closure / Disruption, Port Disruption',\n", + " 'Cargo Disruption, Flight Delays / Cancellations',\n", + " 'Industrial Fire, Port Disruption',\n", + " 'Roadway Closure / Disruption, Landslide, Flooding',\n", + " 'Cargo Disruption, Flooding',\n", + " 'Flooding, Roadway Closure / Disruption, Landslide',\n", + " 'Miscellaneous Events, Political Info / Event',\n", + " 'Kidnap / Detention, Political Info / Event, Protest / Riot, Individuals in Focus',\n", + " 'Train Delays / Disruption, Protest / Riot',\n", + " 'Port Closure, Maritime Advisory',\n", + " 'Hazmat Response, Port Disruption',\n", + " 'Port Disruption, Roadway Closure / Disruption, Weather Advisory',\n", + " 'Flooding, Weather Advisory',\n", + " 'Aviation Advisory, Political Info / Event, Ground Transportation Advisory, Network Disruption, Maritime Advisory, Hurricane, Weather Advisory',\n", + " 'Miscellaneous Events, Political Info / Event, Protest / Riot, Death / Injury, Individuals in Focus',\n", + " 'Individuals in Focus, Protest / Riot',\n", + " 'Public Safety / Security, Individuals in Focus',\n", + " 'Miscellaneous Events, Public Safety / Security',\n", + " 'Maritime Advisory, Protest / Riot, Miscellaneous Events',\n", + " 'Miscellaneous Events, Political Info / Event, Maritime Advisory, Outbreak Of War',\n", + " 'Port Disruption, Waterway Closure / Disruption',\n", + " 'Production Halt, Fuel Disruption',\n", + " 'Miscellaneous Events, Ground Transportation Advisory, Public Health Advisory, Network Disruption, Maritime Advisory, Regulatory Advisory, Security Advisory',\n", + " 'Regulatory Advisory, Political Info / Event, Network Disruption, Hurricane, Weather Advisory',\n", + " 'Maritime Advisory, Military Operations',\n", + " 'Port Disruption, Cargo Disruption',\n", + " 'Regulatory Advisory, Public Health Advisory',\n", + " 'Public Safety / Security, Train Delays / Disruption, Hazmat Response',\n", + " 'Maritime Advisory, Political Info / Event, Military Operations',\n", + " 'Flooding, Train Delays / Disruption, Landslide, Weather Advisory',\n", + " 'Regulatory Advisory, Cargo Disruption',\n", + " 'Public Health Advisory, Public Safety / Security, Security Advisory',\n", + " 'Public Safety / Security, Ground Transportation Advisory, Network Disruption',\n", + " 'Ransomware, Data breach',\n", + " 'Civil Service Strike, Border Closure / Delay',\n", + " 'Outbreak of disease, Miscellaneous Strikes',\n", + " 'Political Info / Event, Ground Transportation Advisory, Public Health Advisory',\n", + " 'Weather Advisory, Network Disruption',\n", + " 'Production Halt, Tropical Cyclone / Storm',\n", + " 'Piracy, Maritime Advisory',\n", + " 'Protest / Riot, Miscellaneous Strikes, Maritime Advisory, Public Safety / Security',\n", + " 'Outbreak of disease, Production Halt', 'Border Closure / Delay',\n", + " 'Weather Advisory, Ground Transportation Advisory, Hazmat Response, Maritime Advisory',\n", + " 'Non-industrial Fire, Port Disruption, Public Safety / Security',\n", + " 'Miscellaneous Strikes, Protest / Riot, Public Safety / Security',\n", + " 'Border Closure / Delay, Aviation Advisory, Ground Transportation Advisory, Maritime Advisory',\n", + " 'Phishing', 'Cargo Disruption, Fuel Disruption',\n", + " 'Kidnap / Detention, Maritime Advisory',\n", + " 'Port Disruption, Power Outage',\n", + " 'Miscellaneous Events, Political Info / Event, Individuals in Focus',\n", + " 'Port Disruption, Outbreak of disease',\n", + " 'Maritime Advisory, Environmental Regulations',\n", + " 'Weather Advisory, Tornado', 'Industrial Action, Production Halt',\n", + " 'Chemical Spill, Non-industrial Fire, Vehicle Accident, Roadway Closure / Disruption',\n", + " 'Protest / Riot, Ground Transportation Advisory, Public Health Advisory, Security Advisory',\n", + " 'Network Disruption, Political Info / Event, Protest / Riot',\n", + " 'Weather Advisory, Flooding',\n", + " 'Aviation Advisory, Maritime Advisory',\n", + " 'Political Info / Event, Public Health Advisory, Security Advisory',\n", + " 'Train Delays / Disruption, Storm, Weather Advisory',\n", + " 'Landslide, Train Delays / Disruption',\n", + " 'Port Disruption, Train Delays / Disruption',\n", + " 'Public Safety / Security, Public Health Advisory, Maritime Advisory',\n", + " 'Roadway Closure / Disruption, Cargo Disruption, Maritime Advisory, Port Disruption',\n", + " 'Regulatory Advisory, Ground Transportation Advisory, Maritime Advisory, Weather Advisory',\n", + " 'Network Disruption, Political Info / Event, Ground Transportation Advisory, Public Health Advisory, Maritime Advisory',\n", + " 'Outbreak of disease, Cargo Disruption', 'Hail, Weather Advisory',\n", + " 'Weather Advisory, Hail',\n", + " 'Regulatory Advisory, Public Health Advisory, Network Disruption',\n", + " 'Cargo Disruption, Customs Regulation',\n", + " 'Military Operations, Public Safety / Security',\n", + " 'Public Health Advisory, Storm, Weather Advisory',\n", + " 'Maritime Accident, Port Disruption, Severe Winds',\n", + " 'Flooding, Roadway Closure / Disruption, Storm',\n", + " 'Flooding, Power Outage, Severe Winds, Storm, Weather Advisory',\n", + " 'Political Info / Event, Miscellaneous Strikes',\n", + " 'Ground Transportation Advisory, Regulatory Advisory',\n", + " 'Flooding, Public Health Advisory, Severe Winds, Weather Advisory',\n", + " 'Production Halt, Environmental Regulations',\n", + " 'Cargo Disruption, Trade Restrictions',\n", + " 'Non-industrial Fire, Vehicle Accident, Roadway Closure / Disruption',\n", + " 'Political Info / Event, Protest / Riot, Public Safety / Security, Security Advisory',\n", + " 'Trade Regulation, Maritime Advisory',\n", + " 'Maritime Advisory, Miscellaneous Events',\n", + " 'Miscellaneous Events, Individuals in Focus, Public Safety / Security',\n", + " 'Miscellaneous Events, Political Info / Event, Maritime Advisory, Individuals in Focus',\n", + " 'Political Info / Event, Miscellaneous Events',\n", + " 'Maritime Advisory, Miscellaneous Events, Public Safety / Security',\n", + " 'Miscellaneous Events, Political Info / Event, Public Safety / Security',\n", + " 'Industrial Fire, Cargo Disruption',\n", + " 'Train Accident / Derailment, Vehicle Accident, Roadway Closure / Disruption, Train Delays / Disruption',\n", + " 'Weather Advisory, Network Disruption, Maritime Advisory',\n", + " 'Flooding, Storm',\n", + " 'Regulatory Advisory, Political Info / Event, Public Health Advisory',\n", + " 'Public Safety / Security, Protest / Riot, Ground Transportation Advisory, Public Health Advisory',\n", + " 'Regulatory Advisory, Network Disruption',\n", + " 'Port Strike, Cargo Disruption, Port Disruption',\n", + " 'Roadway Closure / Disruption, Industrial Action',\n", + " 'Roadway Closure / Disruption, Protest / Riot, Ground Transportation Advisory',\n", + " 'Kidnap / Detention, Maritime Advisory, Miscellaneous Events, Terror Attack',\n", + " 'Political Info / Event, Protest / Riot, Miscellaneous Events',\n", + " 'Miscellaneous Events, Ground Transportation Advisory, Death / Injury, Terror Attack',\n", + " 'Miscellaneous Events, Political Info / Event, Maritime Advisory, Public Safety / Security',\n", + " 'Regulatory Advisory, Cargo Disruption, Customs Delay',\n", + " 'Port Closure, Cargo Disruption, Port Disruption',\n", + " 'Miscellaneous Events, Protest / Riot, Ground Transportation Advisory',\n", + " 'Public Transportation Disruption, Cargo Disruption, Cargo Transportation Strike, Port Strike, Port Closure, Port Congestion, Port Disruption',\n", + " 'Train Delays / Disruption, Non-industrial Fire',\n", + " 'Port Closure, Severe Winds',\n", + " 'Maritime Advisory, Aviation Advisory',\n", + " 'Miscellaneous Events, Maritime Advisory, Public Safety / Security',\n", + " 'Fuel Disruption, Protest / Riot',\n", + " 'Earthquake, Train Delays / Disruption',\n", + " 'Port Disruption, Cargo Disruption, Port Congestion',\n", + " 'Flooding, Ground Transportation Advisory, Roadway Closure / Disruption, Public Health Advisory, Power Outage, Storm',\n", + " 'Individuals in Focus, Political Info / Event',\n", + " 'Bomb Detonation / Explosion, Non-industrial Fire, Maritime Accident',\n", + " 'Weather Advisory, Tropical Cyclone / Storm',\n", + " 'Port Disruption, Ground Transportation Advisory, Train Delays / Disruption, Severe Winds, Storm, Weather Advisory',\n", + " 'Weather Advisory, Security Advisory',\n", + " 'Political Info / Event, Network Disruption, Miscellaneous Events, Outbreak Of War',\n", + " 'Port Closure, Maritime Advisory, Port Disruption',\n", + " 'Production Halt, Regulatory Advisory',\n", + " 'Cargo Transportation Strike, Port Congestion',\n", + " 'Flooding, Power Outage, Severe Winds, Storm',\n", + " 'Customs Delay, Customs Regulation, Trade Restrictions',\n", + " 'Customs Regulation, Border Closure / Delay',\n", + " 'Production Halt, Force Majeure',\n", + " 'Outbreak of disease, Ground Transportation Advisory, Security Advisory',\n", + " 'Maritime Accident, Waterway Closure / Disruption',\n", + " 'Port Disruption, Protest / Riot, Maritime Advisory',\n", + " 'Port Closure, Chemical Spill',\n", + " 'Ground Transportation Advisory, Wildfire, Weather Advisory',\n", + " 'Port Strike, Port Closure, Port Congestion',\n", + " 'Port Congestion, Cargo Disruption, Port Strike',\n", + " 'Cargo Transportation Strike, Port Disruption',\n", + " 'Protest / Riot, Plant Closure',\n", + " 'Port Congestion, Roadway Closure / Disruption',\n", + " 'Port Congestion, Port Closure, Port Disruption',\n", + " 'Port Closure, Waterway Closure / Disruption',\n", + " 'Industrial Action, Production Halt, Force Majeure',\n", + " 'Production Halt, Power Outage',\n", + " 'Tropical Cyclone / Storm, Power Outage',\n", + " 'Outbreak of disease, Ground Transportation Advisory',\n", + " 'Border Closure / Delay, Regulatory Advisory',\n", + " 'Public Safety / Security, Public Health Advisory, Security Advisory',\n", + " 'Hazmat Response, Public Safety / Security, Security Advisory',\n", + " 'Power Outage, Roadway Closure / Disruption, Storm',\n", + " 'Organized Crime, Cargo Disruption',\n", + " 'Roadway Closure / Disruption, Cargo Disruption, Weather Advisory',\n", + " 'Miscellaneous Events, Political Info / Event, Ground Transportation Advisory, Maritime Advisory',\n", + " 'Miscellaneous Events, Terror Attack',\n", + " 'Miscellaneous Events, Maritime Advisory, Terror Attack',\n", + " 'Port Closure, Customs Delay',\n", + " 'Maritime Advisory, Public Safety / Security, Militant Action, Military Operations',\n", + " 'Production Halt, Outbreak of disease',\n", + " 'Miscellaneous Events, Maritime Advisory, Individuals in Focus, Public Safety / Security',\n", + " 'Miscellaneous Events, Maritime Advisory, Individuals in Focus, Terror Attack, Outbreak Of War',\n", + " 'Miscellaneous Events, Maritime Advisory, Death / Injury, Individuals in Focus, Terror Attack',\n", + " 'Military Operations, Protest / Riot',\n", + " 'Power Outage, Roadway Closure / Disruption, Severe Winds, Storm, Weather Advisory',\n", + " 'Weather Advisory, Hazmat Response, Network Disruption, Maritime Advisory',\n", + " 'Industry Directives, Regulatory Advisory',\n", + " 'Protest / Riot, Civil Unrest Advisory',\n", + " 'Regulatory Advisory, Hazmat Response, Maritime Advisory, Weather Advisory',\n", + " 'Production Halt, Industrial Action',\n", + " 'Maritime Accident, Maritime Advisory',\n", + " 'Political Info / Event, Protest / Riot, Individuals in Focus',\n", + " 'Flooding, Roadway Closure / Disruption, Landslide, Severe Winds, Storm, Weather Advisory',\n", + " 'Port Disruption, Workplace Accident',\n", + " 'Miscellaneous Events, Individuals in Focus, Public Safety / Security, Terror Attack',\n", + " 'Regulatory Advisory, Aviation Advisory, Cargo Disruption, Ground Transportation Advisory',\n", + " 'Bomb Detonation / Explosion, Maritime Accident',\n", + " 'Network Disruption, Maritime Advisory, Public Safety / Security, Militant Action',\n", + " 'Miscellaneous Events, Ground Transportation Advisory',\n", + " 'Flooding, Landslide, Hurricane',\n", + " 'Weather Advisory, Ground Transportation Advisory, Network Disruption, Hurricane',\n", + " 'Hazmat Response, Protest / Riot, Public Health Advisory',\n", + " 'Military Operations, Political Info / Event',\n", + " 'Flooding, Roadway Closure / Disruption, Power Outage, Landslide, Severe Winds, Storm, Weather Advisory',\n", + " 'Roadway Closure / Disruption, Severe Winds, Storm',\n", + " 'Aviation Advisory, Ground Transportation Advisory, Public Health Advisory, Regulatory Advisory',\n", + " 'Public Safety / Security, Political Info / Event, Network Disruption, Militant Action, Security Advisory',\n", + " 'Power Outage, Roadway Closure / Disruption, Severe Winds, Storm',\n", + " 'Individuals in Focus, Miscellaneous Events',\n", + " 'Miscellaneous Events, Protest / Riot, Maritime Advisory',\n", + " 'Miscellaneous Events, Political Info / Event, Protest / Riot, Maritime Advisory',\n", + " 'Miscellaneous Events, Political Info / Event, Protest / Riot, Ground Transportation Advisory',\n", + " 'Public Safety / Security, Political Info / Event, Miscellaneous Events',\n", + " 'Miscellaneous Events, Maritime Advisory, Individuals in Focus',\n", + " 'Miscellaneous Events, Political Info / Event, Protest / Riot',\n", + " 'Public Safety / Security, Individuals in Focus, Kidnap / Detention',\n", + " 'Port Closure, Roadway Closure / Disruption, Port Disruption, Flooding',\n", + " 'Regulatory Advisory, Protest / Riot, Public Health Advisory, Miscellaneous Strikes',\n", + " 'Public Safety / Security, Non-industrial Fire, Roadway Closure / Disruption, Train Delays / Disruption',\n", + " 'Aviation Advisory, Political Info / Event, Maritime Advisory, Miscellaneous Events',\n", + " 'Chemical Spill, Hazmat Response',\n", + " 'Public Safety / Security, Roadway Closure / Disruption, Hazmat Response, Bomb Detonation / Explosion',\n", + " 'Flight Delays / Cancellations, Ground Transportation Advisory',\n", + " 'Regulatory Advisory, Protest / Riot, Ground Transportation Advisory, Network Disruption',\n", + " 'Aviation Advisory, Ground Transportation Advisory, Public Health Advisory, Maritime Advisory, Regulatory Advisory',\n", + " 'Death / Injury, Political Info / Event, Miscellaneous Events, Individuals in Focus',\n", + " 'Regulatory Advisory, Outbreak of disease',\n", + " 'Public Safety / Security, Political Info / Event, Miscellaneous Events, Death / Injury, Individuals in Focus',\n", + " 'Power Outage, Severe Winds, Storm',\n", + " 'Customs Delay, Cargo Disruption, Weather Advisory',\n", + " 'Port Closure, Typhoon',\n", + " 'Regulatory Advisory, Ground Transportation Advisory, Public Health Advisory, Network Disruption',\n", + " 'Regulatory Advisory, Political Info / Event, Network Disruption',\n", + " 'Public Safety / Security, Shooting',\n", + " 'Cargo Disruption, Protest / Riot, Ground Transportation Advisory',\n", + " 'Protest / Riot, Vehicle Accident, Roadway Closure / Disruption, Public Safety / Security',\n", + " 'Train Delays / Disruption, Ground Transportation Advisory, Miscellaneous Strikes',\n", + " 'Flooding, Train Delays / Disruption',\n", + " 'Regulatory Advisory, Political Info / Event, Ground Transportation Advisory, Maritime Advisory',\n", + " 'Power Outage, Severe Winds, Storm, Weather Advisory',\n", + " 'Roadway Closure / Disruption, Cargo Disruption, Protest / Riot',\n", + " 'Public Safety / Security, Public Health Advisory, Flooding, Storm, Weather Advisory',\n", + " 'Customs Delay, Port Congestion',\n", + " 'Military Operations, Protest / Riot, Public Safety / Security, Security Advisory',\n", + " 'Public Safety / Security, Ground Transportation Advisory, Maritime Advisory',\n", + " 'Cargo Transportation Strike, Industrial Action',\n", + " 'Postal Disruption',\n", + " 'Cargo Disruption, Roadway Closure / Disruption',\n", + " 'Protest / Riot, Network Disruption, Militant Action, Security Advisory',\n", + " 'Public Safety / Security, Roadway Closure / Disruption, Train Delays / Disruption',\n", + " 'Aviation Advisory, Ground Transportation Advisory, Maritime Advisory, Miscellaneous Events, Death / Injury, Terror Attack, Outbreak Of War',\n", + " 'Miscellaneous Events, Ground Transportation Advisory, Terror Attack, Outbreak Of War',\n", + " 'Political Info / Event, Protest / Riot, Miscellaneous Events, Terror Attack',\n", + " 'Miscellaneous Events, Protest / Riot',\n", + " 'Miscellaneous Events, Maritime Advisory, Public Safety / Security, Robbery',\n", + " 'Public Safety / Security, Death / Injury, Individuals in Focus, Robbery',\n", + " 'Miscellaneous Events, Ground Transportation Advisory, Public Safety / Security, Robbery',\n", + " 'Miscellaneous Events, Maritime Advisory, Death / Injury, Kidnap / Detention, Public Safety / Security, Robbery',\n", + " 'Outbreak Of War', 'Port Closure, Port Disruption, Typhoon',\n", + " 'Flooding, Roadway Closure / Disruption, Port Closure, Port Disruption, Public Safety / Security, Storm, Weather Advisory',\n", + " 'Miscellaneous Events, Political Info / Event, Protest / Riot, Ground Transportation Advisory, Individuals in Focus',\n", + " 'Port Strike, Port Congestion, Port Disruption',\n", + " 'Maritime Accident, Port Disruption, Public Safety / Security, Military Operations',\n", + " 'Train Accident / Derailment, Train Delays / Disruption, Hazmat Response',\n", + " 'Tropical Cyclone / Storm, Power Outage, Landslide, Public Safety / Security, Flooding',\n", + " 'Flight Delays / Cancellations, Non-industrial Fire, Roadway Closure / Disruption',\n", + " 'Miscellaneous Events, Ground Transportation Advisory, Network Disruption, Death / Injury',\n", + " 'Death / Injury, Protest / Riot, Ground Transportation Advisory, Kidnap / Detention',\n", + " 'Ground Transportation Advisory, Protest / Riot',\n", + " 'Aviation Advisory, Ground Transportation Advisory, Network Disruption, Maritime Advisory, Miscellaneous Events',\n", + " 'Weather Advisory, Hazmat Response, Network Disruption',\n", + " 'Ice Storm',\n", + " 'Roadway Closure / Disruption, Ground Transportation Advisory, Storm, Weather Advisory'],\n", + " dtype=object)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data['Category'].unique()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Understanding \"Severity\"" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "severity_counts = data['Severity'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAH4CAYAAACbup4ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwDklEQVR4nO3dd3gU5cIF8LM9vVcgEEjovSqgdARFEAWpIqAUFUS8V8TyWbl2LAgoiAWkSpMmRZDee+gtDVJI79lsne+PNQtLEkggyczunt/z5IHMzs6eTQIn7ztNJgiCACIiIhKVXOwARERExEImIiKSBBYyERGRBLCQiYiIJICFTEREJAEsZCIiIglgIRMREUkAC5mIiEgCWMhEREQSwEImsgPh4eEYM2aM2DFK1a1bN3Tr1q1aXksmk+HDDz+0fv7hhx9CJpMhPT29Wl5fyt8Hsn8sZCph4cKFkMlkZX4cPnxY7Ig4ePAgPvzwQ2RnZ5f7ORs3bkTXrl0RFBQENzc31KtXD0OGDMHWrVurLmgVuXDhAj788EPExcVV6nbHjBlj87328PBAvXr1MHjwYKxZswZms7lSXud+vn/VRcrZyLEpxQ5A0vXxxx+jbt26JZZHRkaKkMbWwYMH8dFHH2HMmDHw8fG55/ozZ87EtGnT0LVrV7z99ttwc3PDtWvXsGPHDqxYsQJ9+/at+tAP4PLly5DLb/3+fOHCBXz00Ufo1q0bwsPDK/W1NBoNfv75ZwCAVqtFfHw8Nm7ciMGDB6Nbt25Yv349vLy8rOv//fffFX6Nin7/imm1WiiVVfvf1t2y3fl9IKpMLGQq0+OPP4527dqJHeOBGY1GzJgxA7179y61PFJTU0VIdW+CIKCoqAiurq7QaDTV9rpKpRLPPfeczbL//e9/+Pzzz/H2229j/Pjx+OOPP6yPqdXqKs1jNpuh1+vh4uICFxeXKn2te6nO7wM5H/6qR/fFYDDAz88PY8eOLfFYbm4uXFxc8MYbb1iX6XQ6fPDBB4iMjIRGo0FYWBjefPNN6HQ6m+fKZDJMnjwZ69atQ7NmzaDRaNC0aVObaeUPP/wQ06ZNAwDUrVvXOr1a1vRteno6cnNz0blz51IfDwoKsvm8PFmbNWuG7t27l9iW2WxGzZo1MXjwYJtl3333HZo2bQoXFxcEBwdj4sSJyMrKsnlueHg4nnzySWzbtg3t2rWDq6sr5s+fb32seN/lwoUL8eyzzwIAunfvbn3/u3fvxujRoxEQEACDwVAi22OPPYaGDRuW+jUoj7feeguPPfYYVq1ahStXrliXl7YPefbs2WjatCnc3Nzg6+uLdu3aYdmyZQDu/f0r/hlYunQpmjZtCo1GY/3+37kPuVh6ejqGDBkCLy8v+Pv747XXXkNRUZH18bi4OMhkMixcuLDEc2/f5r2ylbYPOSYmBs8++yz8/Pzg5uaGhx9+GH/99ZfNOrt374ZMJsPKlSvxySefoFatWnBxcUHPnj1x7dq1Mr/m5Fw4QqYy5eTklDhYRiaTwd/fHyqVCk8//TTWrl2L+fPn24yS1q1bB51Oh2HDhgGwFNKAAQOwf/9+TJgwAY0bN8bZs2fx7bff4sqVK1i3bp3Na+zfvx9r167FK6+8Ak9PT3z//fcYNGgQrl+/Dn9/fzzzzDO4cuUKli9fjm+//RYBAQEAgMDAwFLfR1BQEFxdXbFx40a8+uqr8PPzK/M9lzfr0KFD8eGHH+LmzZsICQmxyZ6UlGR97wAwceJELFy4EGPHjsWUKVMQGxuLOXPm4NSpUzhw4ABUKpV13cuXL2P48OGYOHEixo8fX2qBdunSBVOmTMH333+Pd955B40bNwYANG7cGKNGjcLvv/+Obdu24cknn7Q+5+bNm9i5cyc++OCDMt97eYwaNQp///03tm/fjgYNGpS6zoIFCzBlyhQMHjzYWoxnzpzBkSNHMGLEiHJ9/3bu3ImVK1di8uTJCAgIuOe0/JAhQxAeHo7PPvsMhw8fxvfff4+srCz8/vvvFXp/Ff3ZSklJQadOnVBYWIgpU6bA398fixYtwoABA7B69Wo8/fTTNut//vnnkMvleOONN5CTk4Mvv/wSI0eOxJEjRyqUkxyUQHSH3377TQBQ6odGo7Gut23bNgGAsHHjRpvnP/HEE0K9evWsny9evFiQy+XCvn37bNabN2+eAEA4cOCAdRkAQa1WC9euXbMui4qKEgAIs2fPti776quvBABCbGxsud7T+++/LwAQ3N3dhccff1z45JNPhBMnTpRYr7xZL1++XCKTIAjCK6+8Inh4eAiFhYWCIAjCvn37BADC0qVLbdbbunVrieV16tQRAAhbt24tkatOnTrC6NGjrZ+vWrVKACDs2rXLZj2TySTUqlVLGDp0qM3yb775RpDJZEJMTEwZXyGL0aNHC+7u7mU+furUKQGA8Prrr1uXde3aVejatav186eeekpo2rTpXV/nbt8/AIJcLhfOnz9f6mMffPCB9fMPPvhAACAMGDDAZr1XXnlFACBERUUJgiAIsbGxAgDht99+u+c275btzu/D1KlTBQA2Py95eXlC3bp1hfDwcMFkMgmCIAi7du0SAAiNGzcWdDqddd1Zs2YJAISzZ8+WeC1yPpyypjLNnTsX27dvt/nYsmWL9fEePXogICDAZn9iVlYWtm/fjqFDh1qXrVq1Co0bN0ajRo2Qnp5u/ejRowcAYNeuXTav26tXL0RERFg/b9GiBby8vBATE3Pf7+Wjjz7CsmXL0Lp1a2zbtg3vvvsu2rZtizZt2uDixYsVztqgQQO0atXK5r2bTCasXr0a/fv3h6urq3V73t7e6N27t8322rZtCw8PjxLvvW7duujTp899v0+5XI6RI0diw4YNyMvLsy5funQpOnXqVOpBehXh4eEBADbbvpOPjw8SEhJw7Nix+36drl27okmTJuVef9KkSTafv/rqqwCAzZs333eG8ti8eTM6dOiARx55xLrMw8MDEyZMQFxcHC5cuGCz/tixY21mkx599FEAeKCfbXIcLGQqU4cOHdCrVy+bj9v3myqVSgwaNAjr16+37l9du3YtDAaDTSFfvXoV58+fR2BgoM1H8ZTnnQdV1a5du0QWX1/fEvtcK2r48OHYt28fsrKy8Pfff2PEiBE4deoU+vfvb93fWJGsQ4cOxYEDB5CYmAjAsp8wNTW1xHvPyclBUFBQiW3m5+eXeO8PWpgA8Pzzz0Or1eLPP/8EYJkGP3HiBEaNGvXA287PzwcAeHp6lrnO9OnT4eHhgQ4dOqB+/fqYNGkSDhw4UKHXqejXoX79+jafR0REQC6XV/ppYXeKj48vdbdC8W6E+Ph4m+V3/mz7+voCwAP/bJNj4D5keiDDhg3D/PnzsWXLFgwcOBArV65Eo0aN0LJlS+s6ZrMZzZs3xzfffFPqNsLCwmw+VygUpa4nCEKlZPby8kLv3r3Ru3dvqFQqLFq0CEeOHEHXrl0rlHXo0KF4++23sWrVKkydOhUrV66Et7e3zSlUZrMZQUFBWLp0aanbu3PfZPHI+kE0adIEbdu2xZIlS/D8889jyZIlUKvVGDJkyANv+9y5cwDufupb48aNcfnyZWzatAlbt27FmjVr8MMPP+D999/HRx99VK7XedCvg0wmu+vnxUwm0wO9TkVV9c822TcWMj2QLl26IDQ0FH/88QceeeQR7Ny5E++++67NOhEREYiKikLPnj3L/I+xoiprO+3atcOiRYuQnJwMoGJZ69atiw4dOuCPP/7A5MmTsXbtWgwcONDm1JiIiAjs2LEDnTt3rpSyLXavbM8//zz+85//IDk5GcuWLUO/fv2so7EHsXjxYshkMvTu3fuu67m7u2Po0KEYOnQo9Ho9nnnmGXzyySd4++234eLiUmnfv2JXr161GVVfu3YNZrPZejBY8Xu/82Ifd45ggYr9bNWpUweXL18usfzSpUvWx4nKi1PW9EDkcjkGDx6MjRs3YvHixTAajTZTtoDlCNjExEQsWLCgxPO1Wi0KCgoq/Lru7u4ASv4HW5rCwkIcOnSo1MeK94kXTztWNOvQoUNx+PBh/Prrr0hPTy/1vZtMJsyYMaPE9oxG431fDepe73/48OGQyWR47bXXEBMTU+K84vvx+eef4++//8bQoUNLTBHfLiMjw+ZztVqNJk2aQBAE6+lYFfn+lcfcuXNtPp89ezYAy7n0gGVWJCAgAHv37rVZ74cffiixrYpke+KJJ3D06FGbn6+CggL89NNPCA8Pr9B+cCKOkKlMW7Zssf6mf7tOnTqhXr161s+HDh2K2bNn44MPPkDz5s2t+8+KjRo1CitXrsRLL72EXbt2oXPnzjCZTLh06RJWrlxpPe+2Itq2bQsAePfddzFs2DCoVCr079/f+p/p7QoLC9GpUyc8/PDD6Nu3L8LCwpCdnY1169Zh3759GDhwIFq3bn1fWYcMGYI33ngDb7zxBvz8/NCrVy+b1+7atSsmTpyIzz77DKdPn8Zjjz0GlUqFq1evYtWqVZg1a5bNOcvl1apVKygUCnzxxRfIycmBRqNBjx49rOdUBwYGom/fvli1ahV8fHzQr1+/cm/baDRiyZIlAICioiLEx8djw4YNOHPmDLp3746ffvrprs9/7LHHEBISgs6dOyM4OBgXL17EnDlz0K9fP+u+54p8/8ojNjYWAwYMQN++fXHo0CEsWbIEI0aMsNl1Mm7cOHz++ecYN24c2rVrh71799qcT12sItneeustLF++HI8//jimTJkCPz8/LFq0CLGxsVizZg2v6kUVI/JR3iRBdzvtCaWcOmI2m4WwsDABgPC///2v1G3q9Xrhiy++EJo2bSpoNBrB19dXaNu2rfDRRx8JOTk51vUACJMmTSrx/DtPNxEEQZgxY4ZQs2ZNQS6X3/UUKIPBICxYsEAYOHCgUKdOHUGj0Qhubm5C69atha+++srmNJSKZC3WuXNnAYAwbty4Ul9fEAThp59+Etq2bSu4uroKnp6eQvPmzYU333xTSEpKsnmP/fr1K/X5pb3/BQsWCPXq1RMUCkWpp0CtXLlSACBMmDChzFx3Gj16tM332s3NTQgPDxcGDRokrF692noaz+3uPO1p/vz5QpcuXQR/f39Bo9EIERERwrRp00p87cr6/pX1M1D8WGmnPV24cEEYPHiw4OnpKfj6+gqTJ08WtFqtzXMLCwuFF198UfD29hY8PT2FIUOGCKmpqSW2ebdspX0foqOjhcGDBws+Pj6Ci4uL0KFDB2HTpk026xSf9rRq1Sqb5Xc7HYucj0wQeDQBkSNav349Bg4ciL1791pPryEi6WIhEzmoJ598EhcvXsS1a9cq/SAqIqp83IdM5GBWrFiBM2fO4K+//sKsWbNYxkR2giNkIgdTfB/joUOHYt68eVV+u0Iiqhz8l0rkYPg7NpF94jH5REREEsBCJiIikgAWMhERkQSwkImIiCSAhUxERCQBLGQiIiIJYCETERFJAAuZiIhIAljIREREEsBCJiIikgAWMhERkQSwkImIiCSAhUxERCQBLGQiIiIJYCETERFJAAuZiIhIAljIREREEsBCJiIikgAWMhERkQSwkImIiCSAhUxERCQBLGQiIiIJYCETERFJAAuZiIhIAljIREREEsBCJiIikgAWMhERkQSwkImIiCSAhUxERCQBLGQiIiIJYCETERFJAAuZiIhIAljIREREEsBCJiIikgAWMhERkQSwkImIiCSAhUxERCQBLGQiIiIJYCETERFJAAuZiIhIAljIREREEsBCJiIikgAWMhERkQSwkImIiCSAhUxERCQBLGQiIiIJYCETERFJAAuZiIhIAljIREREEqAUOwARAQaTGen5OqTl6ZBZoEdekREFOiPy//249XcT8osMKDKYYRYECAAgAAIECAIsnwMQBAFymQyuagXc1Uq4qRWWv2uUcFUp4K5RwFWthLerCgEeagR5ahDgoYGPm1rErwKRc2MhE1WD1LwixKYVID6jEEk5WtzMKUJyThFSci0f2VoDBOHe26lqaqUcAe5qBHpqrB81fVxR298ddf3dER7gBk8XldgxiRySTBCk8N8Akf3T6k2ISc9HbHoBYtIKEJP279/TC5BXZBQ7XqXxd1ejjr8bwv3dER5g+WgY7InIIA8o5DKx4xHZLRYy0X0o1BtxPikXZxNycDbR8hGTlg+zE/9r0ijlaBTiiSY1vNG0hhea1vBC41AvuKgUYkcjsgssZKJ7MJrMOJOYg6gb2dYCjnby8i0vhVyGegHuaF7TG+3C/dChri8igzzFjkUkSSxkojsYTWacTczBoZgMHI7JxIm4TBToTWLHchgBHmq0q+OHDnUtH01CvSDnVDcRC5nIbBZuK+AMHI/LQr7Ocfb5Sp2nixJt6/jikcgAdGsYhMggD7EjEYmChUxOqUBnxN4radhxMRW7Lqcis0AvdiT6Vx1/N3RvGIQejYLwUD0/aJTcB03OgYVMTiM5R4sdF1Ox40IKDsVkQG80ix2J7sFNrUDnyAD0aBSE7g2DEOLtInYkoirDQiaHFpdegA1RSdh2/ibOJ+WKHYcegEwGtK3tiwGtauCJ5qEI8NCIHYmoUrGQyeGk5+uwKSoJf55OQtSNbLHjUBVQyGXoFOGP/i1qoE+zEHi78mIlZP9YyOQQCvVG/H0+BetOJ2L/1XQYeU6S01Ar5OjSIBADWtXAY02Ced4z2S0WMtm1wzEZ+OPYDWw7fxOFPDXJ6Xm5KPFMm1oY8VBtNAjm+c5kX1jIZHfyigxYezIRSw7H42pqvthxSKLa1vHF8A618WSLUI6ayS6wkMlunE/KwZLD8Vh/OomjYSo3jprJXrCQSdL0RjM2nUnC4sPxOHU9W+w4ZOc61PXDxC710KNREGQyXh2MpIWFTJKUrzNi6eF4/HogFim5OrHjkIOJDPLAhEfrYWDrmlAr5WLHIQLAQiaJycjX4dcDsVh8KB65DnTLQpKmIE8NxnQOx8iH6vDUKRIdC5kk4UZmIX7aG4NVJ26gyMAraFH18tAoMbR9GMY9Wheh3q5ixyEnxUImUV1LzcecnVex6Uwyzx0m0amVcozoUBuvdI9AkCcv03m73bt3o3v37sjKyoKPj4/YcRwSd56QKJKytZi2Kgp9vtuLdaeTWMYkCXqjGQsPxqHrl7vx2ZaLyC60n5uOjBkzBjKZDC+99FKJxyZNmgSZTIYxY8ZUf7D78OGHH6JVq1Zix6h2LGSqVpkFeszYdAHdZu7GqhMJMLGISYK0BhPm74nBo1/swjfbryCvyCB2pHIJCwvDihUroNVqrcuKioqwbNky1K5dW8RkFnq9/fyCIwYWMlWLfJ0R3+24gi5f7sIv+2N5pyWyC3k6I77/5yoe/XIX5u66Bq3Ez39v06YNwsLCsHbtWuuytWvXonbt2mjdurV1mU6nw5QpUxAUFAQXFxc88sgjOHbsmM22Nm/ejAYNGsDV1RXdu3dHXFxcidfbv38/Hn30Ubi6uiIsLAxTpkxBQUGB9fHw8HDMmDEDzz//PLy8vDBhwgQAwPTp09GgQQO4ubmhXr16eO+992AwWH7pWbhwIT766CNERUVBJpNBJpNh4cKFAIDs7GyMGzcOgYGB8PLyQo8ePRAVFVVZXz7RsZCpShlMZvy6PxZdv9yF73ZcRb6OR06T/ckuNOCrbZfRfeZu/HkqAVI+9OaFF17Ab7/9Zv38119/xdixY23WefPNN7FmzRosWrQIJ0+eRGRkJPr06YPMzEwAwI0bN/DMM8+gf//+OH36NMaNG4e33nrLZhvR0dHo27cvBg0ahDNnzuCPP/7A/v37MXnyZJv1Zs6ciZYtW+LUqVN47733AACenp5YuHAhLly4gFmzZmHBggX49ttvAQBDhw7Ff//7XzRt2hTJyclITk7G0KFDAQDPPvssUlNTsWXLFpw4cQJt2rRBz549rbntHQ/qoiqz50oaPtp4HjFpBfdemciOtKntgw/6N0XLMB+xo1iNGTMG2dnZWLBgAcLCwnD58mUAQKNGjXDjxg2MGzcOPj4+mDt3Lnx9fbFw4UKMGDECAGAwGBAeHo6pU6di2rRpeOedd7B+/XqcP3/euv233noLX3zxhfWgrnHjxkGhUGD+/PnWdfbv34+uXbuioKAALi4uCA8PR+vWrfHnn3/eNfvMmTOxYsUKHD9+HIBlH/K6detw+vRpm23369cPqamp0Ghu3XozMjISb775pnX0bc+UYgcgx3MjsxAfb7qA7RdSxI5CVCVOXs/GwB8OYFCbWnizb0NJHZEdGBiIfv36YeHChRAEAf369UNAQID18ejoaBgMBnTu3Nm6TKVSoUOHDrh48SIA4OLFi3jooYdsttuxY0ebz6OionDmzBksXbrUukwQBJjNZsTGxqJx48YAgHbt2pXI+Mcff+D7779HdHQ08vPzYTQa4eXlddf3FRUVhfz8fPj7+9ss12q1iI6Ovutz7QULmSpNkcGEH3dHY96eaOi4j5gcnCAAq08kYOu5m5jUPRIvPlJXMlf9euGFF6xTx3Pnzq2S18jPz8fEiRMxZcqUEo/dfgCZu7u7zWOHDh3CyJEj8dFHH6FPnz7w9vbGihUr8PXXX9/z9UJDQ7F79+4SjznKaVgsZKoUW88lY8ami0jM1t57ZSIHkq8z4outl/DHseuYMbAZHq0fKHYk9O3bF3q9HjKZDH369LF5LCIiAmq1GgcOHECdOnUAWKasjx07hqlTpwIAGjdujA0bNtg87/Dhwzaft2nTBhcuXEBkZGSFsh08eBB16tTBu+++a10WHx9vs45arYbJZHsAXZs2bXDz5k0olUqEh4dX6DXthTR+nSO7lZitxehfj+KlJSdZxuTU4jIKMeqXo3hjVRRyCsU9TUqhUODixYu4cOECFArbW0+6u7vj5ZdfxrRp07B161ZcuHAB48ePR2FhIV588UUAwEsvvYSrV69i2rRpuHz5MpYtW2Y90rnY9OnTcfDgQUyePBmnT5/G1atXsX79+hIHdd2pfv36uH79OlasWIHo6Gh8//33JfYxh4eHIzY2FqdPn0Z6ejp0Oh169eqFjh07YuDAgfj7778RFxeHgwcP4t1337Xue7Z3LGS6L4IgYPHhePT5di/2XEkTOw6RZKw+kYCe3+zB5rPJoubw8vIqc7/s559/jkGDBmHUqFFo06YNrl27hm3btsHX1xeAZcp5zZo1WLduHVq2bIl58+bh008/tdlGixYtsGfPHly5cgWPPvooWrdujffffx81atS4a64BAwbg9ddfx+TJk9GqVSscPHjQevR1sUGDBqFv377o3r07AgMDsXz5cshkMmzevBldunTB2LFj0aBBAwwbNgzx8fEIDg5+gK+UdPAoa6qw6xmFmL7mDA7FZIgdhUjS+jQNxoynmiHISzoHfZF0sZCp3ARBwMKDcfhq22UUSvwCCURS4eWixDtPNMawDuJfKYukjYVM5RKTlo/pa87gWFyW2FGI7NKj9QMw89mWCOZomcrAQqZ7WnwoDp9svsjbIhI9ID93Nb4Y1AK9mzjGPk+qXCxkKlNOoQFvronCtvO8wAdRZRr5UG2892QTuKgU916ZnAYLmUp1LC4Try0/haScIrGjEDmk+kEemDWsNZrUuPsVqsh5sJDJhtksYPbOa/h+51XeGpGoiqmVckzv2wgvdA6HTCYTOw6JjIVMVsk5WkxdcRpHYh3jzilE9qJrg0B8O7QV/NzVYkchEbGQCQCw+3IqXv/jNLJEvsIQkbOq6eOKH0a2kdQdpKh6sZAJP+y+hpnbLoMz1ETiUivl+LB/U4x4iOcsOyMWshPT6k2YtjoKm86Ie4k/IrI1tF0YZgxsJpm7R1H1YCE7qRuZhZiw+AQuJueKHYWIStG6tg/mP9eWl910IixkJ3QwOh2Tl51CZoFe7ChEdBfBXhrMe64tWtf2FTsKVQMWspP5dX8sPt18EUbuMCayC2qlHF8/2xL9W979Lkpk/1jITsJsFvD+hnNYcvi62FGIqIJkMmB630Z4qWuE2FGoCrGQnUCRwYQpy0/h7wu8BCaRPRv1cB18OKApFHJeRMQRsZAdXFaBHi8uOoaT17PFjkJElaBX4yDMHt4GrmpeB9vRsJAd2I3MQoz+7Shi0grEjkJElahlLW/8MqY9Ajw0YkehSsRCdlDnEnMwduExpOXpxI5CRFUgzM8VC8d2QESgh9hRqJKwkB3QvqtpeHnJSeTrjGJHIaIq5OeuxuIXO6BpDW+xo1AlEO0yMGPGjIFMJivx0bdv33I9v1u3bpg6dWrVhrRD287fxIsLj7OMiZxAZoEeIxYcwekb2WJHoUqgFPPF+/bti99++81mmUZTeftEBEGAyWSCUinq26w2W84mY8qKUzCYOOlB5CxytAaM+vkIfhvbHu3C/cSOQw9A1AulajQahISE2Hz4+vpi9+7dUKvV2Ldvn3XdL7/8EkFBQUhJScGYMWOwZ88ezJo1yzqyjouLw+7duyGTybBlyxa0bdsWGo0G+/fvh9lsxmeffYa6devC1dUVLVu2xOrVq63bLn7etm3b0Lp1a7i6uqJHjx5ITU3Fli1b0LhxY3h5eWHEiBEoLCy0Pu9e261OG6OS8OpyljGRM8rTGfH8r0dx8Fq62FHoAUhy6Fg8HT1q1ChERUUhJiYG7733HlatWoXg4GDMmjULV65cQbNmzfDxxx8DAAIDAxEXFwcAeOuttzBz5kzUq1cPvr6++Oyzz7BkyRLMmzcP9evXx969e/Hcc88hMDAQXbt2tb7uhx9+iDlz5sDNzQ1DhgzBkCFDoNFosGzZMuTn5+Ppp5/G7NmzMX36dAAo93ar2rpTifjvqiiYePUtIqdVqDdh7MJjmD+qLbo1DBI7Dt0H0Q7qGjNmDJYsWQIXF9sLp7/zzjt45513oNfr8dBDD6FBgwY4d+4cOnfujJ9++sm6Xrdu3dCqVSt899131mW7d+9G9+7dsW7dOjz11FMAAJ1OBz8/P+zYsQMdO3a0rjtu3DgUFhZi2bJl1uft2LEDPXv2BAB8/vnnePvttxEdHY169eoBAF566SXExcVh69at5dpudVh1/AamrznDWycSEQBArZBjzojWeKxpiNhRqIJEHSF3794dP/74o80yPz/LPhC1Wo2lS5eiRYsWqFOnDr799ttyb7ddu3bWv1+7dg2FhYXo3bu3zTp6vR6tW7e2WdaiRQvr34ODg+Hm5mYt4+JlR48erfB2q8ryo9fxzp9nwePkiaiY3mTGK0tP4oeRbVjKdkbUQnZ3d0dkZGSZjx88eBAAkJmZiczMTLi7u5d7u8Xy8/MBAH/99Rdq1qxps96dB5CpVCrr32Uymc3nxcvMZnOFt1sVVh6/wTImolIZzQImLz+F38a0R+fIALHjUDlJch8yAERHR+P111/HggUL8Mcff2D06NHYsWMH5HLLcWhqtRomk+me22nSpAk0Gg2uX79eqft1q2q75bH13E28vZZlTERl0xvNmPD7cSwe9xDa8PaNdkHUQtbpdLh586bNMqVSCV9fXzz33HPo06cPxo4di759+6J58+b4+uuvMW3aNABAeHg4jhw5gri4OHh4eFinuu/k6emJN954A6+//jrMZjMeeeQR5OTk4MCBA/Dy8sLo0aPvK3tVbfdeDl5Lx5QVp3gAFxHdU4HehLG/HcMfEx9GoxAvsePQPYhayFu3bkVoaKjNsoYNG2LEiBGIj4/Hpk2bAAChoaH46aefMHz4cDz22GNo2bIl3njjDYwePRpNmjSBVqtFbGxsma8zY8YMBAYG4rPPPkNMTAx8fHzQpk0bvPPOOw+Uv6q2W5aoG9kY//tx6I3mKtk+ETmeHK0Bo345ilUTOyI8oHy7/UgcvHSmnbiWmodn5x1CVqFB7ChEZIdq+rhi9csdEertKnYUKoOoFwah8knM1mLUL0dZxkR03xKztRj58xFkFujFjkJlYCFLXEa+DqN+PoLknCKxoxCRnYtJK8D4349DZ7z3AbFU/VjIElZkMGHc78cRk877GRNR5TgRn4Vpq86IHYNKwUKWKEEQ8N9VUTh1PVvsKETkYDZEJeGb7VfEjkF3YCFL1Nd/X8FfZ5LFjkFEDur7f65i7ckEsWPQbVjIEpS16S/k798vdgwicnBvrTmLo7GZYsegf/G0J4nJvHwWqc8+B8FkwsknR+NdWROxIxGRA/N1U+HPVzrzHGUJ4AhZQtIK0/Ds6dcQM6AVYDajzfpfsSh3N9TghUCIqGpkFRrwwsJjyC3iaZViYyFLhMFkwOu7X0dqURqm1z+J7eNbQebqiqCdm7AqbiVC5Dx3kIiqRkx6Ad5YGSV2DKfHQpaIT458gqi0W/8gFvifxZyJNSALDYb69HH8dnw+2qvyRUxIRI7s7wspmLcnWuwYTo2FLAErL6/EmqtrSizf4xqP/44ywdSiIXA9HjP+/hbDlakiJCQiZ/DVtss4HJMhdgynxYO6RBaVFoUxW8fAaDaWuY5GUGDWyebw+/s4oFTiUP8X8LHQoBpTEpGzCPDQYPOURxDk5SJ2FKfDQhZRvj4fgzcORmJ+YrnWf+dGa7RacQowGpHYayAmenSCiZMcRFTJ2of7Yvn4h6FU8P+X6sSvtoj+d+R/5S5jAPg07BRWTmwImbcXau5Yh9UJaxEgL3tkTUR0P47FZeHzLZfEjuF0WMgi2Ri9EX/F/FXh5632uoxPxnlBVrc2XI4fxuLTP6O5srAKEhKRM/t5fyy2nrspdgynwilrESTkJeDZjc8i33D/R037m93w3Z460Bw+C5mfH+b1nIh1Bv9KTElEzs7XTYVtU7twf3I14Qi5mhnNRry1760HKmMAyJAXYkz3S0gY2AFCZiZeWv81psljKiklEZHloiFvrD4DjtuqBwu5ms0/M9/mfOMHYYKA/zQ+id3j2gByOXqs/QE/Fh2BDPzHQ0SVY++VNPx+KF7sGE6BU9bV6GTKSbyw7QWYhMq/OXivwrqYuDwLQmo6Ch7qghdr9EOOoKj01yEi5+OikmPTq48gMshT7CgOjYVcTfL0eRi8YTCSCpKq7DXqGX3x6WYfyM9fhdCgEV5vMRKXja5V9npE5Dya1fTCn690hoqnQlUZfmWryYzDM6q0jAEgRpmFF55MQG7PNpBduYRZe75HX1V2lb4mETmHc4m5+G7HFbFjODQWcjX4K+YvbIndUi2vVSg3YFyHM7gwvD2EzExM3TgTryquV8trE5Fjm7cnBsfjeP/kqsIp6yqWo8vBgHUDkFlU/T/EI3Ia4+nFsRDyC3D5ieGYqmpT7RmIyLFEBLpjy2tdoFZyPFfZ+BWtYt+e+FaUMgaAZd4X8eV4P8jCaqDhX8vwR9oWuMl4b2Uiun/RaQWYu+ua2DEcEgu5Cp1KPYW1V9eKmuGYJgmThufD0K4pvA78g1WXFqGeQidqJiKybz/ujsa1VN4OtrKxkKuIwWzAx4c+hiCBc4JT5QUY3esqbj7ZHvKL5/HDgdnorsoVOxYR2Sm9yYx3/jzLC4ZUMhZyFfn9/O+4li2daR2jzIwpzU/h0Ni2QGYmpv81E+OV5b+xBRHR7Y7GZmLl8Rtix3AoPKirCiTmJ+Lp9U9Da9SKHaVUTxRE4IVlaTBnZuNMv1GYrmgudiQiskPerir889+uCPDQiB3FIXCEXAU+PfKpZMsYADa7R+PdMWoI9cPRYuMiLM3aARce7EVEFZSjNWDGpgtix3AYLORKtj1+O/Ym7BU7xj1dVqVj3MAUFHRpDb89W7Hy2nLUVOjFjkVEdmb96SQcuJYudgyHwEKuRAWGAnx+9HOxY5RbnlyHsZ3P4tqQDlCdO41fjvyIh1V5YsciIjszY9MFmM3c+/mgWMiVaM6pOUgtTBU7RoW9E3ESmye2ALIy8eHWbzBKxZuSk/3J3rsYGVtnix3jvqWt/wK5R8U9TfJ+XbqZxwO8KgEP6qokcTlxeHr90zAKRrGj3LfORWGYurIIQkoajvUbg/dljcSORBKRc2glCq8cgiEzATKlGpqajeHbdQxU/rWs65jys5C1+1do405B0Guh8qsFr45D4N6wc4ntCUYDkhf/B4bUWISO+R7q4HrWx/Spscjc/iN0yVehcPOGZ9sn4f3Q4LvmM+VnIXHBBNR4YS6U3kEl8x9ehew9i+DZdgD8ek2wLjdkJSNr1y/QJVyAYDLAtW5b+PWeCIW7b5mvVXTjHHKPrIE+JRqm/EwEPv0u3Bp0tH29I2uRe3QNAMD7oUHw6vCM9TFd0mVk/v0DQp7/BjL5rTuy6dPikLLsLdR86RfINe53fb9SFOChwZ5p3eCuUYodxW5xhFxJZp+abddlDAAHXG5g6kgdjM3ro/36n7Ewdw9UMv6+RpYS8mzTDyHPzUTw0BmAyYiUle/BrC+yrpP+1zcwZCYg6Jn3EPrCXLg26Ij09V9AnxJdYntZu3+FwsOvxHKzrhApK9+D0isIoaO/g2+3scjZvxx5p7feNV/emW3Q1Gxcahnrkq8g7/RWqALDbV9LX4TUle8BMhmCh3+KkOe+gmA2InXNxxCEsg9yFPRFUAXVg1/vl0p9XJ8ai5z9SxEw4E0E9J+G7H1LoE+LszzXbELGtrnw6zPJpowBQB0YDqVPKArO77rre5Wq9HwdftgtnVM97RELuRJcyLiA7fHbxY5RKRIVuRjTJwZpj7dD8M6NWB23EkFyg9ixSGTBQz6GR/NeUAfWgTqoHvz7vQ5Tbhr0Kbf+A9YlXoRnm/7Q1GgIlU8IfDoNg1zjDt1N2/+ktdHHoY09Bd/uL5Z4nYILuwGTEf5PvAZ1YB24N+kKz7b9kXts3V3zFV7cC7fIDiWWm/VapG+cCf++r0Lu4mHzmC7xAow5qQh44nWoA8OhDgxHQL/XoU++hqL4M2W+lmtEO/h2GQW3Bp1KfdyQkQBVYDhc67SEa3grqALDYchIAADkHlkDl7Cm0IQ2KH3bkR1QcFH6B4WW5ed9sUjMlu4ZJlJX4UJOS0vDyy+/jNq1a0Oj0SAkJAR9+vTBgQMHqiKfXZh1cpYkrshVWfQyEya1Oo0Tz7eH+uwpLDrxE9qqCsSORRJi1ll+Hm4vOU3Nxii8tA8mbR4EwYyCC3sgmPRwqX3rPHdTQRYyts5GwJP/hVxV8txVXeJFaMKaQaZQWZe51m0DY2YCTEWlX6rRpM2DIf0G1CH1SzyWuf1HuEa0h2t4qxKPCSbLL5q3v5ZMoQZkMugSzt/jK1A2dWA4jFmJMOamwpiTCmNmItQBdWDISkb+2R3weXRUmc/VhDaALvkKBKN9/hKsM5rxxZZLYsewWxUu5EGDBuHUqVNYtGgRrly5gg0bNqBbt27IyMioinzloteLd7rO0eSjOJh0ULTXr0pf1DyF5S81gCw3C5/8/S2eVaWJHYkkQBDMyPpnATQ1m0B92zRw4FPTIZiMSPh+OK7PfBoZ2+Yi8Ol3ofKt8e/zBKT/9R08Wj8OTWjJ8gQAU0E2FG4+Nsvk7pbPzflZpT8nNw2AUGIKvODCHuhvRsO36+hSn6ep0QgylQuydv8Gs6EIZn0Rsnb9AghmmMp4rfJQBYTBp8vzSPnjPaSsfA8+XUdDFRCGzG1z4NttLLSxJ5H0yytI+m0Kim6cs3muwsMPMBlhKrj/1xfbhqgknLxuv/nFVKFCzs7Oxr59+/DFF1+ge/fuqFOnDjp06IC3334bAwYMsK4zbtw4BAYGwsvLCz169EBUVBQA4MqVK5DJZLh0yfY3qG+//RYRERHWz8+dO4fHH38cHh4eCA4OxqhRo5Cefus8t27dumHy5MmYOnUqAgIC0KdPn3I9ryrMOjmrSrcvtj89r+CjF90hBHjjhXXf4B0Z9xE5u8y/f4Q+LR4BA960WZ69bwnMugIEDf0fQkd/C6/2A5G2/gvr/tO8Exsh6LXwfvjZSs0jGC03S5Ep1dZlxtw0ZP6zAAH937BZfjuFmzcCB74FbfRR3PjmWdz4bgjMugKogyMAmeyBMnm2fgI1x89HzfHz4dn6CeSf/QcytSs0NRshY+tsBD79Lvx6jEP6hi9tRsPFWQWDfd8AhqPk+1OhQvbw8ICHhwfWrVsHna70H5hnn30Wqamp2LJlC06cOIE2bdqgZ8+eyMzMRIMGDdCuXTssXbrU5jlLly7FiBEjAFgKvUePHmjdujWOHz+OrVu3IiUlBUOGDLF5zqJFi6BWq3HgwAHMmzev3M+rTP/E/4Mz6WXva3IU51QpmDg4E9oOTfDon/PwU8FBKMArezmjzO0/Qht9DMHDP4XSK8C63JCVjLyTm+D/+GtwDW8FdVA9+DwyApqQSOSd3AQAKLp+BrqkS7g+82nEfzkAifPHAwCSF01F+l/fAAAU7j4wFWbbvKa5wPK53KP0I5/lrl6W9W6b0tbfvAZzYTaSF76G+C8HIP7LAdDdOIe8ExsR/+UACGYTAMt0eM2JP6PWq0sQNmUZAp78L4z5GVD6hDz4F+tfpsIc5BxYBr9eL0GXdAUqvxpQ+dWES50WEExGGLJuXVO++D3I3bwq7fXFcCQ2EwejebGQiqrQ8elKpRILFy7E+PHjMW/ePLRp0wZdu3bFsGHD0KJFC+zfvx9Hjx5FamoqNBrL/qGZM2di3bp1WL16NSZMmICRI0dizpw5mDFjBgDLqPnEiRNYsmQJAGDOnDlo3bo1Pv30U+vr/vrrrwgLC8OVK1fQoIHlYIj69evjyy+/tK7zv//9r1zPqywmswmzT9nvOY8VlSXXYsyj5/FFSAeEr/0Tq9qlYHyt/sgQeIqDMxAEAVk75qHwyiEED/8MqjsKyzpKld3xO75MDvx7ZqVfrwkwP/qc9SFTfiZSV76PgKemQxPaEIBlP3T23t8hmIyQKSw/W9q4U1D61YLijoOyiil9QyFTu8GQfh0qv5oAAJc6LRH6whyb9TI2z4LKvxa8HhpU4ghnhZu35bXio2AuyIFb5EPl/trcS9bOn+HZfiCUXgHQ37wCwWS69aDZBJhv/XKrT4uHwjPAmseefbfjKjpFBNx7RbK6r33ISUlJ2LBhA/r27Yvdu3ejTZs2WLhwIaKiopCfnw9/f3/raNrDwwOxsbGIjrac+jBs2DDExcXh8OHDACyj4zZt2qBRI8s5r1FRUdi1a5fN84sfK94GALRt29YmV3mfV1k2RG9AdE7lb1fKBBnwZoOT+GdcK7idO4HFZ35BcyWPqHQGmdt/RP753QjoPw1ytRtM+Vkw5WfB/O/UqsqvFpS+ocjYNge6pMswZCUj9+haFMWdhlv9hwEASq8g69HM6sBwa3mqfEKto233Jl0BhRIZW2ZBnxaPgot7kXdiA7zaDywzm0wmh2t4K+gSbl1TWa5xs3ktdWA4ZCoN5C6eNvu9889shy7xkuWAq/O7kL7uc3i2f8rm/OqUFe8g98RG6+dmvRb6lBjoU2IAAMacFOhTYmDMLXlRIG3sKRgyE+HZph8AQB3SAMbMBGijj1tO5ZIroPz36wAAuoTzcAlvXa7vidQdjc3EQV5Ss0Lua3jj4uKC3r17o3fv3njvvfcwbtw4fPDBB3jllVcQGhqK3bt3l3iOj48PACAkJAQ9evTAsmXL8PDDD2PZsmV4+eWXrevl5+ejf//++OKLL0psIzQ01Pp3d3fbE+fL+7zKoDfp8WPUj5W6TXsyP+AsLk+sg0krcvDVzu8wt+dEbDSUPKeUHEf+qc0AgJTlb9ss939iKjya94JMoUTQ4A+RvWcRUtfMgGDQQukTCv9+r8M1on25X0eucUfwkBnI3P4jkhdNhcLVC96dhsOzVd+7Ps+jxWPI2DobPt3Hlhyl34UhMxFZexfBrM2H0jsI3h2HwPOO8jdk3YRGe+v+4fqbV5Gy/B3r51k7fwYAuDfriYB+r1uXmw06ZO6Yh8AB062ZlF4B8O01EelbvoNMoYJ/v9etR5sLRj0Krx5G8LMflTu/1H274wo6RXKUXF6VcqWub775Bp9++imWL1+Oxx9/HNeuXUN4eHiZ6y9atAhvvvkm1q1bh0ceeQQ3btxAjRqWIzHfffddrFmzBufOnYNSWfrvC926dUOrVq3w3XffWZeV53mVZfGFxfjy2Jf3XtHB1TH64IutflBcicff/cbjG3O42JHISQmCgJuL/wOvdgMto2w7lHdqs2WXwNAZYkepVEtefAiP1Gcpl0eFpqwzMjLQo0cPLFmyBGfOnEFsbCxWrVqFL7/8Ek899RR69eqFjh07YuDAgfj7778RFxeHgwcP4t1338Xx48et23nmmWeQl5eHl19+Gd27d7eWMQBMmjQJmZmZGD58OI4dO4bo6Ghs27YNY8eOhen2fS93uN/nVZTBZMDCcwsrbXv2LF6ZjTH9riOrSzP0XjsHc4qOQeZA52OT/ZDJZPDv86r1YC27JFfAr9dEsVNUuu92XBE7gt2o8FHWDz30EL799lt06dIFzZo1w3vvvYfx48djzpw5kMlk2Lx5M7p06YKxY8eiQYMGGDZsGOLj4xEcHGzdjqenJ/r374+oqCiMHDnS5jVq1KiBAwcOwGQy4bHHHkPz5s0xdepU+Pj4QC4vO+79Pq+iNsVsQqrW/m4gUVWKZEZMaBeFMyPbI2L7aqy8uQlecvu+hCjZJ3VwPXg06yF2jPvm2bKPzb5rR3E8Pgv7rvIaBuXBm0tUgCAIeGr9U4jNiRU7iiQNyW2EZxdfhym0JqY2G4mrJhexIxGRBHSs54/lEx4WO4bk8VrWFbDrxi6W8V2s9LqET8d7Q6HLx+y936O3KlvsSEQkAYdiMnA+KUfsGJLHQq6A3879JnYEyTumv4EWB3chJsgD/934NV5RSOceqfr060iYO9rmDkVEVD1+2cfBzL1wyrqcTqeexqgtZV8U3p4UXC5A+uZ0aOO1MGYbUfvV2vBqa3tlIEEQkPpnKrL2ZMFUaIJbfTfUeL4GNCElbwhwu+TlyTBrzaj9Qi3MvNAKNTeewN7OT+D1nbtRdP0sZGoXeDTrCZ+uo0tcnKGYMScF2QdWoOj6GZgLsqDw8IN7k+7w7jTEeiMAY04K0jd9A33KNaiDIxHw5H+g9L51nELq6o/g3rxXiXvxpv35KVRBdeHTefj9fOmI6D6pFDIcmN4DQV7clVUWjpDLafGFxWJHqDRmnRkutV1QY1SNMtdJ35yOjO0ZqDG6BiLej4BcI0fc13Ew68u+ZKZZZ0bW3iz4dvGFCQJeb3IKu0e3wNdL5qBZUQrCR32BgCdeR/7ZHcjet6TM7RgyEgBBgH+fSQh98Qf49hiPvNNbkL3nd+s6WTt/gcLTH6FjvofCww9ZO3+xPlZwcS8gk5UoYwBwb9Eb+ae32PfRuER2yGASsOhQnNgxJI2FXA43C25i5/WdYseoNJ4tPBE8KLjEqLiYIAjI+DsDQQOC4NXGCy5hLqg1vhaMWUbknswt9TkAkHcmDzKlDG6RbtZlX6QewjVdEb6pFYoN2QfRuEFz+Dz6HPJO/mW9/d2dXOu1RUC/qXCt2wYqnxC41X8IXh2eRuGVW3fVMmTcgEeznlD51YRHs57W+82ai/KRvW8x/Hq/XPq2w1vBpM1D0fWz9/w6EVHlWnbkOrR6/jJcFhZyOSy7tAxGwXlO5TGkGWDMMcK9ya2roSncFHCNcIU2uuxLZRZeKYRruKvtsmuF0NRywTfjXSEXCjHv0A/oUr8BBH0hDOnXy53JrCuE3NXT+rkqqC6K4k5DEMzQxp2CKigcAJC161d4tn4SSq/AUrcjU6igDqr3QPe7JaL7k1VowOqTCWLHkCwW8j1ojVqsubJG7BjVyphj+eVD6W17xTOllxKGnLJvnK5P10PpY/scY44RSm8lrqoy8OJTSchpGIz3Dy4CgHLfc9aQlYS8Exvh0fLW5RN9u78AQ2YCEn98EcasJPh2fwFFN85BnxoL92Y9kLbucyTOexEZ2+aUGIkrPP1gzOF5kURi+G1/LHjoUulYyPewMXojcvVlT9PSLYJBgFxV9o9UvkyPcQ+fweXHGwMAxgjx99ymMS8dqSs/gHujR2yuZ6z0DEDQ4A9Q65XfEDT4AyhcvZH59w/w6zMJOQdXQKZ2RY3x82HMSrJcxP82MqXaenciIqpeMekF2M+bTpSKhXwPq6+sFjtCtSseGRePlIsZc41QeavKfJ7CQwFToe3+IaW3ssR2PvC1XEb1oQuHsTh7J9Rl3FvZmJeBlOXvQFOzEfz6Tr5r5pxDK+ES3hqakEjobpyDe8NOkCmUcGvQCbo79hebtflQ2Pn9Zons2Ypj0jkdUkpYyHdxJesKLmZeFDtGtVMFqqD0VqLgQoF1mUlrgjZaC9cI1zKf51rHFbpE25GnW6QbihKKYMy9Vcr55/Mhd5Vjw6RaCIyOwuqYFaihsJ1WNualI2X521CHRML/ial3vYOPIf0GCi7uhs+jltPSBLPJehS1YDJBEMx3rB8PVVDEPb4KRFRVtp9PQVaBXuwYksNCvosN1zaIHaFKmIpM0MZroY23HKClT9dDG6+FPsPyD0Qmk8H/MX+kbkxF7qlcFN0oQsJPCVD6KuHVpuyRpUczDxQlFcFUYLJZpqmpQcJPCdBe1yLvbB5S1qTAr6cfTngk49XhBTibk4Sb341EC63lIK/iMlZ6BcK3+wswF+Za7797J0EQkLFtNnx7jIdcbTm/UVOrCfKjtlmK+vxOaGo2tq5vzEmBKS8DruGtHvjrSET3R28y489TiWLHkBxeGKQMRrMRvVf3RrrW8fZ15F/MR9wXcSWW+3T2Qa3xlovbWy8MsvvfC4M0KN+FQaI/jobvo77w637r/sj6dD2Sfk9CwaUCyDVy+HT2QcizIZApZAAA7cVCRH8Rgx0tWmLngCmYf/IsMjZ/V+r260zfZPN53uktKIo9hcCnb92f1lSQjfSNX0GXfAWuddvCv99UyFWWss45tBJFN84heMjH9/w6EVHVaRTiia1Tu4gdQ1JYyGXYm7AXk/6ZJHYMu5N3Og83V95E5P8iIZPLKvTcN5Jb4aE/zuNQn+fwERpWejbBZEDiTxMQ0H8aXGo1qfTtE1HFrJ/UGS3DfMSOIRmcsi7D+mvrxY5glzxbecK3qy8MWWWfHlWWmaGnsWhcHXTcuxq/5u+DSla5vysac9Pg3XEIy5hIInhwly2OkEuRo8tBj5U9oDfzoAMxNDIE4OMNrtB5BmFCnaeRalbe+0lEZHc8NUocfbcXXNWlX9fe2XCEXIptcdtYxiK6pErH+GfSYHTTYdGpn9BKVXDvJxGR3cnTGbH1fLLYMSSDhVyK9dGcrhZbjqwIYx85h+h2Afj8n1kYpHK8g+uICPjrDAu5GAv5DnE5cTiTdkbsGPSvtyNPYsvg2hi//UdMl0eLHYeIKtneq+nILar4MSeOiIV8hw3RjnnusT371f8cZo31Q/cjf2Ke9jBk4GEPRI5CbzRjx4UUsWNIAgv5Dn/F/CV2BCrFfpcbeH2EAbVunsPqpA3wlTvP3beIHB2nrS1YyLe5nHkZSQVJYsegMiQoczDm8Vho/bRYeuZXNFGWfStIIrIf+zhtDYCFbGNPwh6xI9A96GQmvNz6NE519MY3++einypT7EhE9ID0Jk5bAyxkG3tusJDtxee1TmH5YD+8uvdnTFXEiR2HiB4Qp61ZyFYZ2gycyzgndgyqgLWeV/Dxc0r0Ob0R3+tOiB2HiB4Ap61ZyFb7EvfBLJR+X16SrrPqVEwcnImw7PNYmfoXPGSmez+JiCRHbzJj/1Xnvt4AC/lfexP2ih2B7lOWXIvRXS8gK7gAf1z6HZFK3b2fRESSs+dymtgRRMVCBmAwG3Aw6aDYMSQr/0I+rr59FYJZeuf/5p3Jw7X3rsEsCHij0Uns6azBnKPz0VOVI3Y0IqqgvVedu5B51X4Ax28eR4HBPq6XnLYpDSmrU+Df2x+hI0Otyw3ZBtz84yYKzhfAVGSCJlSDwCcD4d3eG0DZ90AGgHrv14NbPbcyX/PmHzcR2D/Q5naK2Qezkb4lHboUHRSuCni08EDI0BAoPe79I2XMN+Lae9dgzDKi8dzGULhbLiyvjdci8ZdE6FP0cG/kjprja1q3J5gERH8cjRqja9hk9WzhidQ/U5F9KBu+nX3xY+AZXH46HNPWLUJk+0GYb6x5zzxEJA3JOUW4fDMPDUM8xY4iCo6QYT+nOxXGFCJzdyZcwlxKPJawIAH6m3rUnlob9f9XH15tvXDjhxvQxlvO1XWr74aG3zW0+fDt4gtVoAqudV3LfM2CKwXQp+rh1c7r1rKrBUhYkADfLr6o/0l9hE0KgzZGi6TfyncOd+IviaW+h8RfE+He2B0RH0XApDUhbdOt35bTt6bDrb5bqb84+HT2QeaOW6c/7XSLw7QhhRhweTO+MkaVKxMRScOeK6liRxANCxn2cbqTqciEhPkJqDm2JuRuJb9t2mta+PXyg1s9N6iD1AgaEASFmwLaOEshy5VyqHxU1g+lhxK5p3Lh+4gvZDJZie0VyzmSA4+mHpCrb72m9poWqgAV/Hv7Qx2ohnsDd/h180NhTOE930fGzgyYCk0I6BtQ4jFdsg5+Xf2gCdHA+2Fv6JIs+4L1qXpk7c1C8KDgUrfp2doT2lgtdKm39h3HKbMxpl88ahVdwNLM7XCT8YA9Inuw54rzTls7fSHHZMcgIT9B7Bj3lLw4GZ4tPeHR1KPUx10jXZF7NBfGfCMEs4Dsw9kwG8xwb+Re6vq5p3JhyjfB91Hfu75u4ZXCEiNo10hXGDONyIvKgyAIMOYYkXM8B54t7j7NVJRYhLT1aag1oRZQyu8ALmEuyD+fD8EkoOBCgXUUnbgoESFDQqBwLf2eqWp/NZReShRetv2FoEhmxIT2UUiqlYkV0csRpuAtNYmk7lhcFgr1znlpXKcv5EPJh8SOcE/Zh7OhjdcieHDpI0QAqP1KbQgmAZcmX8L58eeRtCgJtafUhiZYU+r6Wfuy4NHcAyo/1V1fW5+uh9LHdr+we3131JpYCzd+vIHz487j0muXoHBVoMaoGmVux2wwI2FeAkKGhkDtry51nZov1ETO8RxcefMKZEoZAp8MRNaBLMjVcrjWc0XczDhcefMKUtaUvKKP0lcJQ0bp5zB+XOcUNj5iwPyzC9FZlXfX90tE4tIbzTgUnSF2DFE4fSGfSj0ldoS70mfokbwsGWETw2ymje+UsjYFpkITwt8MR8QHEQjoE4Abc2+g6EZRiXUNmQbkn82/5+gYAASDALnK9nWLEouQvCwZgQMCEflhJOr8tw706XokLkosO9/qFGhCNfDp5FPmOi41XVDv7Xpo+HVDhL0UBsEkIHVdKmqMqoHkJclwi3RD5IxI5J7IRe6pXJvnylVymPVlT0uv8L6EL/tr8e755RitunnP901E4tnnpOcjO/1R1qdTT4sd4a6K4opgyjXh2gfXbi00W6aSM/7JQNOfm0KfrkfmP5mI/CQSLjUt07yutV1RcKUAGf9koOYY2yONs/ZlQeGhgFdrL9yLwkMBU6HtxTbSNqXBLdINgU8EArBMNcs1csR+GovgQcFQ+ZQcdRdcKEBRQhFyXvj3dKR/z6C6+OpFBPYPRPDTJUf/N5ffRMBjAVD5qVBwqQBBzwRBrpHDs4UnCi4V2OQ3FZig9Lz7j/MJdTJefdIDX+/dhgbB7fGurMk93z8RVb8T8VliRxCFUxfyzYKbSCmU9gXN3Zu4I/J/kTbLEn9JhDpEjcB+llORBN2/7XbHflmZXIY7bx0sCAKy9mfBp7MPZMqyD+Yq5lrHFbpE2wttCHoBuGN3rvWUqDJOVQ57NczyvH9pYy2nONV7px7UQSWnsPMv5EOXpEPNFy2/TAhmAYLJ8vziP4uZ9WboU/VwqVPyyO07pSryMab7JXxzzgWLClIx3qsL9JwoIpKUi8m5KNQb4aZ2ropy6v+JpD46BgCFqwIutVxsPmRqGZQeSrjUshSQJlQDdbAaSQuTUBhTCF2qDulb0pF/Ph9ebWxHwQUXC2BIM8Cvi1+5Xt+jmQcKrtqeo+3ZyhO5J3KRsTMD+lQ9Cq4WIHlpMlzruULlaxkd557IxZW3rlifownS2LwHVYDKml3pZfuPzqw3I3lxMmqMqWEterf6bsj8JxPa61rknMiBW/1bpz8VRhdCppLBLaLsc6lvZ4KA15qdwtXwZPyRuBYhch7sRSQlRrOA09ezxY5R7Zy7kNNOix2hUsiUMtR5vQ6UnkrEfxePa/93DdkHs1FzXE14trQ98jlrbxbcIt2gqVH6wV538u7oDV2iDrrkW6Nk30d9ETosFJk7MnH1/67ixtwbUIeoUfvV2tZ1TIUm6G/eX9Glrk+FR0sPuNa5dXR36MhQFF0vQuxnsfBq5WVzXnTOkRx4P+wNuaZiP86zgqOwrGMWFkSvQHtV/n1lJaKq4YzT1jJBEKR3PcRqMmzTMJzPOC92DMm7ueImTEWmEvuipcCYZ8TVt64i4sMIqANLP3r7Xuob/fHhrmAsrdsXfxiCKjkhEd2Prg0CseiFDmLHqFZOO0LWGrW4nHlZ7Bh2IbB/IFT+Kkley9qQbkCN52vcdxkDwFVlBib2uoZnMv/Be7hy7ycQUZU7dT0LzjZedNpCPpd+DkbBOU8+ryiFuwJB/YNsrmUtFa51XeH9kPcDbydfpse4DlHwdzmNBYUHoACv7EUkptwiI66kONeuJKctZHs4oIuq33t1T+J0vRgsT9+MADl/YSMSk7PtR3beQnaQA7qo8v3uex4/t4/Dgpt/orny3tfnJqKqEXUjW+wI1copC1kQBJxJOyN2DJKwQy4JmP7IFXyQvglPqZzzMn5EYrt0M/feKzkQpyzkxPxEZOuyxY5BEpesyMPEh6PwlH4XpsljxI5D5HSupOTDLMGDSauKUxbytexr916JCIBeZsJrTY7D0+so5hiOQ1bWpciIqNJpDSbEZzrPbiMWMlE5fBV6GofqRmFx/g54y0z3fgIRVYpLyc4zbc1CJiqnDZ5XMaflWfyU+xcaKrVixyFyChdvOs8tU52zkLNYyHR/zqtT8d92J/F/2r/RV5Utdhwih8cRsgMzmU2IzYkVOwbZsRx5ESY1P4THlf9gkuK62HGIHNoljpAdWHYcFhi88IFbAzzv0wKP+DRCTbdgyGXO96Wg+yfIgP8LPwZ1wD58CZ5CR1RVbmQVokDnHBfpca6bTQJQZMSgzfWTaHPH8iKVK+L9wxHrHYwYFzfEKgTEGPIQr02BzqQrdVtEP/udRVfXXPwcnYMpys4oFPiLHVFlEgQgNr0AzWo++CVypc7pChkZ0aUudjFo0fDmRTS8edFmuVkmR6JvLcT61kKsuxdilQrEmAoRW5SObH1OdSQmidvjGo/Yxjn44bIWH6u6IsZYvltbElH5xGcUspAdUmbFLvAgF8wIy7yOsMzr6HLnptz9EesfjhhPP8SqNYiBHnH6TCQVpkHg+apO5boiG2803oMZsQaslD2KXQavez+JiMolPrNA7AjVwgkLufQR8v3wK8iAX0EG2t6xvEjlijj/uoj1CUKMizti5WbEGHJxXZvK6W8HppOZ8Ga9ffhvahHq5nXEr/oaYkcicgg3nOTiIDLB2W44OasVkCXOUdZmmRyJfmGI9amJGJvp7zTk6J3n0H5n8Ex+Q9RJ6YSP9Q3FjkJk9zpF+GPZ+IfFjlHlnGuEbDIA2eKdpiIXzAjLiEdYRnyJ6e8M9wDEBtRBjIcfYtVqxMKAWF0mkrWc/rZHaz0uo4U6G98l5OItfVsU8WAvovuWmO0cF+JxrkLOvg4I0rzsoX9BOvwL0tHujuVatRvibj/6u3j6uzAFerNelKxUPmfUKUgM34KZNwrwma4TEk1qsSMR2aXk7CIIggCZTCZ2lCrlXFPW8QeB3x4XO0WlMMkUlulv35qIcfO8bfo7Fbl65zmR3h4oIMNbKV2wLu8RHDZ4ih2HyC4deacngr1cxI5RpZxrhFyYKXaCSqMQTKidEYfaGXHoesdj6R6BiPWvjdjbpr9jdBm4qU3n9LcITBDwSfAejHXNQ3hmV6zQBosdicjuJGRpWcgORes4hXw3AflpCMhPQ/s7lheq3RHnX8dm+jvWkIP4whQYzAZRsjqT37xOoocqG//J6IVv8uqJHYfIrqTlFYkdoco5VyE70Aj5frjpC9Ak+QKaJF+wWW6SKZDgX9ty9LebJ2KVcsSaChGjTUGeIV+ktI5pp2sM4kJWYYa8Dz7ObQmD4Nj7xIgqS2aB4w8anKuQnWSEXFEKwYQ66bGokx6Lbnc8lu4RZJn+9vRDjEqFWOgRo8tECqe/71uMMgtzQtbgA00+vk9/CKlmldiRiCQvs8Dxr+HgZIWcJXYCuxOQn4qA/NRSp79jA8IR6xWMGBdXxMnNiDHk4Dqnv8ulUG7AF/6b8JImB3+ndEeU3k3sSESSxhGyo3HyKevK5KYvQNOk82iadN5muVGuRIJfbcT6hCLWzQsxShliTVrEcvq7VPM89qG/Khs1U/tic76/2HGIJCur0PFP83SuQuYIucopzUaEp8cgPD0G3e94LN0zGDH+tRHr4Xvb9HcGUrTpomSVio2as2hVIxNjM57Cbxm1xY5DJEkZBSxkx8IRsqgC8lIQkJeCDncsL9R4WG7S4RWIWBc3xMpNiDXkIr7wJoxm57gP6mlFIpICfsd/NE9jVlJjmJzwVuVEd5PlBIXsXBcGmdkQyL8pdgoqJ6NciQT/OojxCUWsqydilDLEmQoRq0112OlvpSDHmKJ+WHT9IWSanev3ZaK7qenjigNv9RA7RpVyrkKeEQiYHP+3LGeQ5hWCGL9aiPW47ejvogykFjnG9PcgU2cciu+NyzrHvhACUXm5qRW48HFfsWNUKef5FVyXzzJ2IIG5NxGYexMP3bG8QOP579HfgYjVuCJGZkKsMRfX7Wz6e43iADrVS0dg8kDsz/YVOw6R6Ar1Joe/nrXzjJCzrwPfNRc7BYnEKFfiRvH0t5sXYhVArKkQsdoU5Buke/PzukIAInOHY21STbGjEInu0oy+cFEpxI5RZZxnhMwDupya0mxE3bRo1E2LLvFYqneoZfrb3Q8xKiViBR1idZmSmP6OlaUj3esnPO86DIujG0GA444OiO5FZzSzkB0CT3miMgTlJCMoJxl33v68ePrbcvT3v9Pf+hzcKEyBUai+6e88mQ5/qhdhRNN+WH+xE/LNjvsfEtHd6IwmAI57ZTvnKWRDodgJyM646/LQLPEsmiXaLjfIVbgRUAex3qGIdfNEjAKINRUgtjAFBcaq+znbYP4LXZqn4syVfkjQ8mAvcj46g1nsCFXKeQpZxvM6qXKozAbUS72GeqnXSjyW4l3j3+lvH8utL81FiNVlILUoo1Jee5/+GBo1SIN/4ghEpXtVyjaJ7IXOyEJ2DDJO81HVC85JQnBOEjresTzfxcsy/e0ZiFgXF8TAhFhDDhLuY/r7kj4O/sFz0dVrNPbE1Ki88EQSZ5mydlxOVMgcIZN4PIpy0TzhDO48zt8y/R2OGO8Qm+nvuHtMf2eYc5CrmYs+LUdgW1TTqg1PJBF6jpAdhJyFTNJjmf6+inqpV0s8dtO7BmL9aiHGwxexKiVizTrE6tKRVmQ5Y8AAEw7qF6Nn+z7Yd6Ir9Gb+jJNj45S1o+AImexMSE4SQkqZ/s5z8f53+jvg3+nv6+j78BYciuqNtAK1KFmJqoOjn/TnRIXMfcjkGDyLctAiIQot7lhu9NyN973+g2XJoaLkIqpqSoVjV7LzDBs5QiYHp8xLxCc50/Fr/QOQyZzjAnzkXJQOvuvRsd/d7eQcIZPjk5mN6HFjLo7W/Rm1XYvEjkNUqRRyjpAdA0fI5EQCk3Zhp8d7GBaaLHYUokqjUjj2/+OO/e5ux0ImJ6PMS8RnOdPxS/2DnMImh8ARsqNgIZMTkpmN6HljDqewySGoeFCXg2AhkxMrnsIeGnpT7ChE940jZEfBg7rIySnzEvF5znT8Uv8Qp7DJLnEfsqPgCJkIMrMBPW/M5hQ22SUPjWNfOsN5WkqhETsBkWRwCpvsjVIugzsL2UG4+4udgEhSiqewf47kUdgkfd6uKrEjVDnnKWRXX0DB6/wS3U5mNqBXwhwcrfsLp7BJ0ljIjsY9SOwERJIUmLSTU9gkaV4sZAfjwUImKkvxFPaCyENiRyEqgSNkR+MRLHYCIkmTmQ3onTAbR+v9glouOrHjEFmxkB2NR6DYCYjsQlDSP9jtySlskg4WsqPhCJmo3JR5CZzCJsnwcWMhOxYWMlGFcAqbpCLYy0XsCFXOyQqZB3UR3Y/iKexnQziFTeKo4cNCdiw87YnovinzEvBlLqewSRyh3q5iR6hyzlXIHCETPRBOYZNYaviwkB0L9yETVQpOYVN1clcreJS1w9F4ACp3sVMQOYTiKeyfIg+LHYUcXKgTjI4BZytkgOciE1UimdmAxxK+5xQ2VSlnmK4GnLGQPUPFTkDkcDiFTVWphrfjH2ENOGMhB9QXOwGRQ+IUNlWVmhwhO6jgZmInIHJYnMKmqhAZ5CF2hGrhfIUc1ETsBEQOLyjpH+z2eh+DQ1LEjkIOoH4wC9kxBTcVOwGRU1Dm3sBXuW9iPqew6QGoFDKE+zvH2THOV8hufoBHiNgpiJyCzGxAn3+nsGtyCpvuQ7i/O5QK56gq53iXd+IomahaBSX9gz2cwqb74Cz7jwGnLWTuRyaqbpzCpvtRn4Xs4II4QiYSA6ewqaIigz3FjlBtnLOQOUImEhWnsKm8OEJ2dIGNALlS7BRETq14Cnte5BGxo5BEqRVyRASykB2bUgP4RYidgsjpycwG9E2YhSP1fuUUNpXQuIYX1ErnqSnnead34rQ1kWQEJ+3AHq/3MSiYU9h0S6ta3mJHqFbOW8g8sItIUpS5NzAzfzqnsMmqVW0fsSNUK+ctZJ6LTCQ5MpOeU9hk1bKWj9gRqhULmYgkh1PY5O2qQt0A57hkZjHnLWTfOoB3mNgpiKgMnMJ2bi3DfCCTycSOUa2ct5ABoG5XsRMQ0V0UT2Efrvcbp7CdjLMd0AU4eyHXYyET2YOQpO3Y4/UBp7CdiLMd0AU4eyFzhExkN5S51zEzfzp+5BS2w1PIZWgX7id2jGrn3IXsGQwENhY7BRGVk8ykx+OcwnZ4zWp6w8tFJXaMaufchQwA9bqJnYCIKohT2I7tkUh/sSOIgoXM/chEdolT2I6rc2SA2BFEwUIOf4Q3miCyU5zCdjwuKjna1vEVO4YoWMgaT6BGG7FTENEDKJ7CfiY4Vewo9IDah/tBo1SIHUMULGSA+5GJHIAy9zq+zn8TP0YeFTsKPYBOEc45XQ2wkC24H5nIIVimsL/D4YjfEOqiFzsO3YdHnHT/McBCtqjVAVC5iZ2CiCpJSOJ27OUUtt3xc1ejaQ0vsWOIhoUMAEo1ULuj2CmIqBKpcuPxdf6b+IFT2HajV+MgyOXOdf3q27GQi3E/MpHDkZn0eCLhOxyOWMgpbDvwWJMQsSOIioVcLLKn2AmIqIqEJP7NKWyJc1cr8Eh9591/DLCQbwluCgQ2EjsFEVURTmFLW9eGgXBROefpTsVYyLdr/qzYCYioCnEKW7r6NHXu6WqAhWyLhUzkFIqnsAdyClsSVAoZujcKEjuG6FjIt/OtA4Q9JHYKIqoGqtx4fMspbEl4uJ6/U97d6U4s5DtxlEzkNIqnsA9FLEKIhlPYYuF0tQUL+U5Nn+bNJoicTGjiNuzz+ZBT2CJQKWR4onmo2DEkgYV8J/cAIKKH2CmIqJqpcuI4hS2Cbg2D4OeuFjuGJLCQS8NpayKnxCns6jeoTS2xI0gGC7k0jfoBKnexUxCRSIqnsJ/iFHaV8nVToQePrrZiIZdG7Q40fFzsFEQkIlVOHL7Ln445kcfEjuKw+resAbWSNVSMX4mytBgidgIiEpnMpMOTCd9yCruKPMPpahss5LJE9ATc/MVOQUQSwCnsyhcR6I5WYT5ix5AUFnJZFEqgyUCxUxCRRBRPYc+OOC52FIcwqC1Hx3diId8Np62J6DYykw79E7/BwYjfOYX9AJRyGY+uLgUL+W5qPwwENxc7BRFJTI3ErZzCfgB9moUg2MtF7BiSw0K+l46TxE5ARBLEKez7N6ZTuNgRJImFfC/NBwOeNcROQUQSxCnsimsS6oX24X5ix5AkFvK9KFTAQxPETkFEElY8hd0/KE3sKJLH0XHZWMjl0XYsoPYQOwURSZgqJw7fF7yJ7yM5hV0WHzcVBrTijGNZWMjl4eoDtH5O7BREJHEykw4DEjiFXZah7cPgolKIHUOyWMjl9fArgIw/SER0b5Yp7I84hX0bhVyGUQ/XETuGpLGQy8u3DtC4v9gpiMhOqHJiOYV9m8eaBKOWr5vYMSSNhVwRnaaInYCI7AinsG+Z1D1S7AiSx0KuiFptgdodxU5BRHbG2aewuzUMRLOa3mLHkDwWckV1nCx2AiKyQ848hf1qD46Oy4OFXFENnwD8IsROQUR2qHgK+0DEYgRpDGLHqRYP1/ND2zq8EEh5sJArSi4HOr4idgoismM1E7fggM+HeDIwXewoVe7VHvXFjmA3WMj3o9VI3iuZiB6IKicWswunYVbECbGjVJnWtX3QOTJA7Bh2g4V8P1SuQOfXxE5BRHZOZtLhqcSvHXYKezKPrK4QFvL96jAR8KopdgoicgCOOIXdvKY3ejYOFjuGXWEh3y+VC9DtbbFTEJGDcLQp7LcebyR2BLvDQn4QrUYAgfyhI6LK4ShT2F0aBHLf8X1gIT8IuQLo+b7YKYjIwVimsD+yyylsuQx4m6Pj+8JCflCN+gFhD4mdgogcjConBrO1b+K7iJNiR6mQga1ronGol9gx7BILuTL0+kjsBETkgGTGIgxMnIn9kUvsYgpbrZTjv481FDuG3WIhV4Y6HYEmT4mdgogcVK2EzXYxhT2mUzhq+riKHcNusZArS+8ZgNJF7BRE5KCkPoXt7arCpG487/hBsJAri28doOMksVMQkQOT8hT2az3rw9tNJXYMu8ZCrkyP/AfwCBE7BRE5uOIp7CckMoXdONQLozuFix3D7rGQK5PGA+j1gdgpiMgJqHJiMFf7Jr4VeQpbJgP+N7AZFHKZqDkcAQu5srUcDtRoI3YKInICMmMRnk6cif2RS0Wbwn62bS20reMryms7GhZyZZPJgCe+AmT80tqb93YWYcJGrdgx7oveJCD8uzwcTzKJHYVEUCvhL+z3rf4pbF83Fd5+vHG1vqYjY2tUhVrteIDXHT7bp0P7Bfnw/CwXQV/lYeCKQlxOL708BEHA40sLIPsoF+sulf5bf0ahGbW+yYPso1xkFwnW5cl5ZoxYU4gGs/Mh/ygXU7cWlSvfzXwzZh3R491HNaU+/vl+HWR3bC9TK+DVzVo0nJMP109yUfvbPEzZUoSc2/LcyWASMH17EZr/mA/3T3NR4+s8PP+nFkl5Zus6OqOAUX9q4fVZLhrMzseOGKPNNr46oMOrm21/cVArZHijkwbTd5Tv/ZLjUWdX/xT2m30bwdddXW2v5+hYyFWl+/8BAQ3ETiEZe+KNmNRejcMvumP7KDcYzMBjSwpRoC9ZXt8d1kOGu++PenFDEVoEK0os15mAQDc5/q+LGi1Dyv/j/fNJAzqFKVDHp+RzjiWaMP+EHi2CbR9LyjMjKV/AzN4anHvZAwsHumLrNSNe3FD2KLvQAJy8acJ7XTQ4OcEda4e64nKGCQOWF1rX+emEASeSTDj0ojsmtFVhxBotBMHydYrNMmPBSQM+6VnyFLuRzVXYf92E86kcJTur6pzCbl3bB8Pah1XpazgbFnJVUbkAA38EZCVLwxltfc4dY1qp0TRIgZYhCix8ygXXcwScSLYtj9M3Tfj6kB6/PlX2Od0/HtMju0jAG51K/mYe7iPHrMdd8HxLNbw15T/IZMU5A/o3KHnKRr5ewMi1Wizo7wpfF9vtNQtSYM0QN/RvqEKEnxw96irxSQ8NNl4xwmgufZTs7SLD9lHuGNJUhYYBCjxcS4k5j7viRLIZ13Mso+SL6SYMaKhE0yAFJrVXI61QQHqhZXsv/6XFF7008Crlvfm6ytA5TIEV56R1OgxVv6qewlbIZZjxVDPIZDyQqzKxkKtSrXZAp8lip5CkHJ3lTz/XW/+gCw0CRqzRYu4TLgjxKP1H80KaCR/v1eH3p11RWQd1ZmoFXEgzo12Nkq85aXMR+tVXolc9Zbm2laMT4KWRQVmBcDk6ATIAPv8WfstgBfZfN0FrELAt2ohQDxkC3GRYesYAF6UMTzcu+1zPDjUV2HedI2Sq2insiV3qoVlN70rfrrNjIVe17u/yFo13MAsCpm4tQucwBZoF3ZpBeH1rETqFKfBUo9ILR2cUMHyNFl/11qC2d+X96F7PMUMAUMPTdpsrzhlwMtmEz3qVvl/5TumFZszYq8OENuW/OEKRUcD0HUUY3lxpHfW+0FqFlsFyNPkhH5/s02Hls67IKgLe312E2Y+74P92FiHy+zz0WVKAxFyzzfZqeMoQn2Mu7aXICRVPYe+LXIpAdeXMnDQK8cTUXtwdVxVYyFVNqQEG/sCp69tM+qsI51JNWDH41jVvN1w2YGecCd/1LXuq+u1/dGgcIMdzLSr3IBKtwTId7HLbIPhGjhmvbS3C0mdc4aK892g3Vyeg37JCNAmU48Nu5Stwg0nAkFVaCALwY79bXwuVQoa5/VwR+5onjo33wCO1lfjv30WY0kGNUzdNWHfJiKiXPPBwTQWm3HHQmqtShkLOWNMdwhL+wgG/j/D4A05hqxQyzHy2JdRKVkdV4Fe1OtRsC3SeInYKSZi8WYtNV43YNdodtbxu/fjtjDUhOtMMn8/zoPw4F8qPcwEAg1Zq0W1hwb/rGLHqgtH6eM/fLQdCBXyZhw923f/RxQFulsLNuu3o6BPJJqQWCGgzv8D6enviTfj+iB7Kj3Nhum0fcZ5OQN8lhfBUy/DnUDeoFPcucINJwJDVWsTnmLF9lFup+4SL7Yo14nyqCZM7qLE7zoQn6ivhrpZhSFMVdsfZTk9nagUEunG/HpWkzo7BD9o38U3EqfvexqTukZyqrkLl2zFGD67bO8DlrUDaRbGTiEIQBLy6pQh/XjJi92g31PW1/V3wrUfUGHfHVG/zHwvwbR+N9WCrNUPcoDXeKsJjiSa8sKEI+8a6IcLv/n+3jPCTw0sDXEgzo4G/ZSajZ10lzr7sbrPe2PVaNApQYHpntfWqRLk6AX2WFEKjADYMdyvXaLq4jK9mmLFrtBv83crOXmQUMGmzZaSukMtgMgP/HnANgxk2vxgAwLk0M1qHcjaGSiczFuGZxK/QPrIfnrk+BGn68u9eaV7TG5O78+YRVYkj5OqiVFumruXO+TvQpM1FWHLGgGXPuMJTI8PNfDNu5put08UhHnI0C1LYfABAbW+5tbwj/GzXKV7eOFCBIPdbP8qnb5pw+qYJ+XoBaYVmnL5pwoW0sg90kstk6FVPif23HQzlqZGVyOOuksHfVWbNlqsT8Nhiy6lbvwxwRa5OsL6v24uy0Zx8/HnRMo9sMAkYvEqL40kmLH3GFSYB1ufoTSWPzJ6xR4cn6iutJdu5tgJrLxlwJsWEOUf16Fzb9udpX7wRj9VjIdPdWaawP0bfwIxyra9WyvH1kJZQKlgZVck520EsNdsAnacC+2aKnaTa/XjcUkjdFhXaLP/tKReMaVW5+4Rbzy+w/v1EshnLzhpRx1uGuKmeZT5nXGsVxm8swpe9NZCX81SOk8kmHEm0lHjk7Hybx2Jf80C4j2U7lzPMyNFZyjYxT8CGy5YLfbS6LScA7Brthm7ht/5Jnks1YeUFI05PvDVSH9xEid1xSjz6WwEa+suxbJCb9bFDN4zI0QkY3IR33KF7U2dH40flm/gzYjL+E936ruu+3qsBGgSX/e+HKodMKL7iAFUPox74qRuQel7sJHQbQRDw0M8FeP1hDYY3t89CG7q6EC2DFXinjKuNEZXlRq2yp7A7hPth+YSHefOIasD5h+rm5FPXUiWTyfBTf9cyL+ghdXqTgOZBCrz+MC9jSBVX1hS2r5sKs4a3YhlXE46QxbL/W2DHh2KnICKyEpSuWBs8Gf/9dwr75+fboVeTYJFTOQ8WsphWjgYurBM7BRGRjRu1nsTqGtPw+hOtxI7iVFjIYtIXAD/3AlIviJ2EiOiWWu2BMZstu9io2nAfspjU7sCwpYCLj9hJiIgs3PyBZxeyjEXAQhabXz1g0M+AjN8KIhKZTG75/8i7lthJnBJbQArq9wa6vyN2CiJydt3eBiJ6iJ3CabGQpeLRN4DG/cVOQUTOqv5jQJdpYqdwaixkqZDJgIHzeKtGIqp+PrWBZ36y/D9EomEhS4nGAxi2DNDwbipEVE003sDwFYCrr9hJnB4LWWr8I4BBCwDwN1UiqmIKteVMj+CmYichsJClqUEfy8EVRERVRgY8PQ+o+6jYQehfLGSp6vom0OhJsVMQkaN67H9As0Fip6DbsJClSiYDnp4P1GgjdhIicjQPTwI6TRY7Bd2Bl86UusJMYGE/Xl6TiCpH02eAwb/yiGoJ4ghZ6tz8gFHrAN+6YichInsX/qhlvzHLWJJYyPbAMxh4fj3gVVPsJERkr4KaWI6oVmrETkJlYCHbC986lpGyW4DYSYjI3njVAp5bA7jwGgdSxkK2J4ENgFFreeEQIio/F2/gudWAVw2xk9A9sJDtTWhLYOQqQOUudhIikjqFxnL1v6DGYiehcmAh26PaDwHDllj+sRERlUautFz1L/wRsZNQObGQ7VVED8upC3Kl2EmISGoUGmDIYqDJU2InoQpgIduzxk8CT80Fr3tNRFYqN2DEH0CjJ8ROQhXEQrZ3LYcBT3wldgoikgKNF/DcWiCiu9hJ6D5wvtMRdBgPmE3A1rcA8MJrRE7J1c9yFkaN1mInofvES2c6knNrgD9fAkx6sZMQUXXy+PfiQTya2q6xkB1NzB7gj+cAXa7YSYioOniHWcrYP0LsJPSAWMiOKPkMsHQwkJ8idhIiqkp+EZYy9gkTOwlVAhayo8qKA5YMAjKuiZ2EiKpCUBPL5XQ9g8VOQpWEhezICjKAZc8CiSfETkJElSm0FTDqT8vd4MhhsJAdnb4AWDUGuPq32EmIqDLU7giMWAm4eImdhCoZz0N2dGp3YNhyoNVIsZMQ0YNqNtgyMmYZOySOkJ3Jjo+A/d+InYKIKkqmAHp9CHSeInYSqkIsZGdz5Cdg63RAMIudhIjKw9XXct36iB5iJ6EqxkJ2Rhc2AOteBvT5YichorsJagoMWwr41RU7CVUDFrKzSr8KrBwNpJ4XOwkRlabxAODpeZbjQMgpsJCdmUEL/PVf4PRSsZMQUTGZHOj+DtBlmthJqJqxkAk4tQT46w3AqBU7CZFz03gDgxYADfqInYREwEImi5TzwMrneWUvIrEENLCcohgQKXYSEgkLmW7R5QEbXgXO/yl2EiLn0vAJ4On5PL/YybGQqaSjC4Bt7/A2jkRVTaaw7Cvu9hYgk4mdhkTGQqbSJZ4EVo0Gsq+LnYTIMfnXtxxFXaud2ElIIljIVDZtFvDny8CVLWInIXIgMuDhl4Ge7wMqV7HDkISwkOnuBAE4OBvYOYNT2EQPyjcceOoHILyz2ElIgljIVD5pl4ENU4Abh8VOQmSHZEC7F4DeHwMaD7HDkESxkKn8BAE4/qvlJhW6HLHTENkHr1rAU7N5LWq6JxYyVVxuMrD5DeDSJrGTEElbq+eAvp8CLt5iJyE7wEKm+3dxI7B5GpCXLHYSImnxCAb6fw807Ct2ErIjLGR6MEW5wI4PLVPZ4I8SEZoNBp74CnDzEzsJ2RkWMlWO64ctB32lXxY7CZE4/COBx/4HNHxc7CRkp1jIVHmMemD/N8C+r3mKFDkPV1+g63Sg/ThAoRI7DdkxFjJVvrTLwMbXgOuHxE5CVHXkKqDDeKDrm5ZSJnpALGSqOhc2ADv/x2lscjyNnrScU+wfIXYSciAsZKpaZhNw5g9g12dADq+LTXYutCXQ51Mg/BGxk5ADYiFT9TDqgRO/AXtnAgWpYqchqhjPUKDHe0DL4YBcLnYaclAsZKpe+gLg8I/Awe+BIl7tiyRO5QZ0mgJ0fg1Qu4mdhhwcC5nEoc0CDswCjswHDIVipyGyJVcCLYYBPf4P8AoVOw05CRYyiSsvBdj7FXBiIWA2iJ2GnJ3aA2gz2nJ7RJ8wsdOQk2EhkzRkxQG7P7ccACaYxU5DzsYjGHhoItDuRcDVR+w05KRYyCQt6deAIz8Cp5cDhgKx05Cj868PdHoVaDkMUGrETkNOjoVM0qTNAk4sAo4uAHITxE5DjibsYcuBWg0fB2QysdMQAWAhk9SZjMDF9ZYjsxOOiZ2G7JlMDjR8wlLEYR3ETkNUAguZ7EfCCeD4L8C5tYBRK3YashdKF8uUdMdXgYBIsdMQlYmFTPZHm2XZx3ziNyD9ithpSKpqtgVaDLXcDtHdX+w0RPfEQib7FrvPci/mS5t4hykCfOpYSrjFUI6Gye6wkMkxFGQAFzcAF9YDcfsAs1HsRFRdXH2BJgMt09K1HxY7DdF9YyGT4ynMBC79ZSnnmN284IgjUqiBBn0sI+H6fQClWuxERA+MhUyOTZsNXN5iKefonYBJJ3Yium8yywi4xVCg6UDeg5gcDguZnIcuD7i8FbiwDrj2D4/UtgcKNVCnExDZG2j8JOAbLnYioirDQibnpC8ArmyzjJyv/QPo88RORMV8alsKuH5voG4XQO0udiKiasFCJjKbgJtngPhDwPWDlj8L08VO5Tw03pZRcN0uQGQvILCB2ImIRMFCJipN+lUg/iBw/ZDlz+x4sRM5DrUHULsjUPdRIPxRILQlIFeInYpIdCxkovLITbqtoA8BqRcA8J/OPSldgMCGQHBzILgpUKsdUKMNoFCKnYxIcljIVC7dunVDq1at8N1334kdRRq0WcD1I0DSKSDjqmVEnRHt3Heo8qwBhDSzFG9wM8tHQH2OfonKiYXsxMaMGYNFixZh4sSJmDdvns1jkyZNwg8//IDRo0dj4cKFyMzMhEqlgqenp0hp7URu0r/lfNVyK8niss654Tj3eb5z1Bvyb/m6+YmdjMiusZCd2JgxY7Bz507k5uYiOTkZrq6uAICioiKEhobCy8sL3bt3x8KFC6slj16vh1rtoBd4MBQBmTG3jaavAdnXLSNtbZblfGmxT8OSyQH3QMAjGPAMsf3z9r971+Kol6gKcEeOk2vTpg2io6Oxdu1ajBw5EgCwdu1a1K5dG3Xr1rWud+eUdXh4OCZMmIBr165h1apV8PX1xf/93/9hwoQJ1uecPXsWr732Gg4dOgQ3NzcMGjQI33zzDTw8PABYfiHIzs5G+/btMXfuXGg0GsTGxlbfm69OKhcguInloyyGIqAo+1ZBa7NKfl68TJdnKVCZwlKOcgUgV1o+ZPJ//17WMhXg5g94BgMeIf/+GWwpYxYtkWhYyIQXXngBv/32m7WQf/31V4wdOxa7d+++6/O+/vprzJgxA++88w5Wr16Nl19+GV27dkXDhg1RUFCAPn36oGPHjjh27BhSU1Mxbtw4TJ482WbE/c8//8DLywvbt2+vwndoJ1QugCrEMhIlIqcjFzsAie+5557D/v37ER8fj/j4eBw4cADPPffcPZ/3xBNP4JVXXkFkZCSmT5+OgIAA7Nq1CwCwbNkyFBUV4ffff0ezZs3Qo0cPzJkzB4sXL0ZKSop1G+7u7vj555/RtGlTNG3atMreIxGR1HGETAgMDES/fv2wcOFCCIKAfv36ISAg4J7Pa9GihfXvMpkMISEhSE1NBQBcvHgRLVu2hLv7rassde7cGWazGZcvX0ZwcDAAoHnz5o6735iIqAJYyATAMm09efJkAMDcuXPL9RyVSmXzuUwmg9lcsSOJby9sIiJnxilrAgD07dsXer0eBoMBffr0eeDtNW7cGFFRUSgouHVe7oEDByCXy9GwYcMH3j4RkaNhIRMAQKFQ4OLFi7hw4QIUigc/0nbkyJFwcXHB6NGjce7cOezatQuvvvoqRo0aZZ2uJiKiW1jIZOXl5QUvL69K2Zabmxu2bduGzMxMtG/fHoMHD0bPnj0xZ86cStk+EZGj4YVBiIiIJIAjZCIiIglgIRMREUkAC5mIiEgCWMhEREQSwEImIiKSABYyERGRBLCQiYiIJICFTEREJAEsZCIiIglgIRMREUkAC5mIiEgCWMhEREQSwEImIiKSABYyERGRBLCQiYiIJICFTEREJAEsZCIiIglgIRMREUkAC5mIiEgCWMhEREQSwEImIiKSABYyERGRBLCQiYiIJICFTEREJAEsZCIiIglgIRMREUkAC5mIiEgCWMhEREQSwEImIiKSABYyERGRBLCQiYiIJICFTEREJAEsZCIiIglgIRMREUkAC5mIiEgCWMhEREQSwEImIiKSABYyERGRBLCQiYiIJICFTEREJAEsZCIiIglgIRMREUkAC5mIiEgCWMhEREQSwEImIiKSABYyERGRBLCQiYiIJICFTEREJAH/D44qA3UtvR7GAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(12, 6)) # Adjust size as needed\n", + "plt.pie(severity_counts, labels=severity_counts.index, autopct=lambda p: f'{int(p/100.*severity_counts.sum())} ({p:.1f}%)',\n", + " startangle=140, counterclock=False)\n", + "plt.title('Event Severity Distribution')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Delve into hidden info..(group by Severity and Region)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "minor_cases = data[data['Severity'] == 'Moderate'].copy()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "country_counts = minor_cases['Region'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "\n", + "# Keep the top 3 countries\n", + "top_countries = country_counts.nlargest(3)\n", + "\n", + "# Calculate the count for 'Rest'\n", + "rest_count = country_counts[3:].sum()\n", + "\n", + "# Create a new Series from the top 3 countries\n", + "top_countries_series = top_countries\n", + "\n", + "# Add the 'Rest' category by assigning it directly to the Series\n", + "top_countries_series['Rest'] = rest_count\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAH2CAYAAABEGEf0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACAR0lEQVR4nO3dd3hTZf8G8PuczO4Wyt6rrDLKKHu0gCAgS15FloKK/BBFHCCogL76KiIiSwVEkaGgDEVAloosWYoM2bL36B5Z5zy/P9KGlra0QNuTpPfnuriAjJNv0uTk7jMlIYQAERERkRuQtS6AiIiIKB2DCREREbkNBhMiIiJyGwwmRERE5DYYTIiIiMhtMJgQERGR22AwISIiIrfBYEJERERug8EkH7nDWnXuUAPdG/7MiAoGP1vu4V5/DkUmmAwaNAg1a9Z0/alVqxYiIiLQp08fLFy4EA6HI9Pto6Oj8frrr+f5+L/88gvGjh2b6+1ef/11REdH3/fj5CQhIQFjxozBvn37XJcNGjQIgwYNeuBj5xeHw4HXX38dERERaNSoEXbt2pXlNoMGDXK9PhcvXnT9vJYtW5btMRMTE1GvXj3UrFkTu3fvfuAa7/z5FLSTJ0/iiSeeuKf7pL8uM2fOzPW2f/zxB0aOHIk2bdqgQYMG6Ny5MyZPnoxbt27db8maSUpKQoMGDVC3bl3cuHFD63LyzZ3npuz+5Mc54m6eeOKJbB/30KFDud730KFDeO2119C+fXvUr18fHTt2xFtvvYULFy4UaM25+fTTTzF//vxcb5df52Ct5XZOWLlyZbY/4/r16yM6OhrvvPMOkpKS8r2uvP4cMtLnexVurE6dOpg4cSIAQFEUxMfHY+vWrXj//fexb98+fPLJJ5BlZ1abNWsW/P3983zsBQsW5Ol2I0aMwODBg++59twcPXoUP/74Ix599FHXZenP1V1s27YNq1atwogRI9CyZUvUqVMnT/eTZRnr16/H448/nuW6TZs2wWaz5XephWb9+vXYv3//Pd1HkqRMf+fko48+whdffIEuXbrgjTfeQHBwMI4fP4558+Zh48aNWLx4McqUKXPftRe2NWvWICAgAIqiYPny5fi///s/rUvKFxMnTsz0hfD222+7Lk9XrFixAnt8IQSOHz+OIUOGoEuXLpmuq1at2l3vu2TJEvzvf/9Ds2bN8Morr6BkyZI4d+4c5s+fj40bN+Lrr79GrVq1Cqz2u5k+fTpGjhyZ6+3u9Vzv6WbNmoUSJUq4/h8fH49t27Zh0aJFiImJwSeffJKvj5fXn0NGRSqY+Pv7o2HDhpkui46ORtWqVfHee+9hzZo16NGjBwDk+UvzXlWsWLFAjpud6tWrF9pj5UVcXBwAoE+fPqhQoUK2tylZsmSW1qtGjRph9+7diImJyXKCXrt2LWrXro2jR48WSM3uKDQ0FLIso1SpUjneZu3atZg3bx7GjRuHp556ynV58+bN0a5dO/Tu3RvvvfceZs2aVQgV54+VK1eiTZs2MBgM+P777/Hcc8+5fpHwZHd+TtO/JO88VxWU8+fPIzk5Ge3atbunx/zzzz/x3nvvYcCAAXjjjTdclzdr1gwdO3ZEr169MH78eKxcubIAqs4/BXWud1e1a9dG+fLlM13Wrl073Lp1Cz///DOSk5Ph5+enUXVOnv+pzgcDBw5EqVKlsHTpUtdldzbvpYeW+vXro3nz5nj11Vdx7do1AM6m2D179mDPnj2uLoXdu3ejZs2aWLp0KaKiotCoUSPs2LEj264Cu92Od999F02bNkWTJk0wduxYxMTEuK7Prksm/fjpj5XeCjN48GDXbe+8n9VqxezZs9GlSxfUq1cPDz30EObOnQtVVTM91htvvIG5c+eiffv2qFevHvr164eDBw/e9TVUFAVLlizBI488gvr166N9+/b46KOPYLVaATi7SNJfz44dO+bYxVSjRg3UrFkz02WdOnWCLMvYtGlTpstjY2Oxa9cudOvWLctxzp49ixdffBGtWrVCw4YNMWjQIPz555+ZbhMfH49x48YhMjISTZs2xZQpUzK9Fuk2b96MPn36oF69emjVqhXeffddpKSkuK6fOXMmOnXqhFmzZiEyMhKtW7dGfHw8LBYLpk6dioceegjh4eFo1KgRhgwZ4gpRM2fOdAWDjM2wqqpi7ty56NSpE8LDw9G5c2csWrTI9XgmkwkVK1bM8jplNHfuXFSvXh1PPvlklusqV66M1157DREREa6+35iYGLz99tuIiopCeHg4IiMj8fzzz+PixYuu+50/fx7Dhw9Hs2bN0KBBAzz++OP4/fffMx37xIkTeO6559CoUSM0atQIzz//fJYm/a+//tr1HmzTpg0mTZqUaxPyqVOncODAAbRv3x49evTApUuXsG3btky3Se/iWr9+PUaMGIGGDRuiZcuW+PTTT5GUlITx48ejcePGaNmyJaZMmZKp3zsxMRHvv/8+OnbsiHr16qF79+5Yvnx5puNHR0djxowZmDx5Mlq2bIn69evj6aefxtmzZzPdbtWqVejatSvq1auHHj164I8//kCdOnUe+At63bp16NOnDyIiItCqVStMmDAB8fHxrutnzpyJ6Oho/Pbbb+jSpQsaNGiAxx57LNcuzvT34722bMyfPx8BAQF4+eWXs1xXrFgxvP766+jQoYPrs5LbOQLI/VwHOANqnTp1cODAATz++OOoV68eoqKiMnUXpH82Zs2a5fp3Tp/TO8/1VqsVH374Idq1a4fw8HA88sgjWLduXaaaDh8+jCeffBKNGzdGREQEnnrqKfz99993fb3y8hnL6/l3z549ePzxx13dszt37rzrY+dFQEAAJEnK1BK7b98+DBw4EA0aNEBkZGSW7yZVVTFt2jRER0cjPDwc0dHRmDp1Kux2O4Dsfw55IoqIgQMHioEDB+Z4/ZgxY0TdunWF3W4XQggRFRUlxo4dK4QQYt++faJ27dpi5syZYteuXeKHH34QrVq1EgMGDBBCCHHy5EnRq1cv0atXL7F//36RmJgodu3aJcLCwkSrVq3Ezz//LFatWiWSk5PF2LFjRVRUlOtxo6KiRO3atUW/fv3E5s2bxXfffSciIyNFnz59hMPhyLH29OPv2rVLJCYmisWLF4uwsDCxePFicfLkySz3U1VVPPXUU6Jhw4biiy++ENu3bxdTp04VtWvXFm+++Wam16lx48biscceE5s2bRIbN24UHTp0EG3btnXVk53x48eLunXrik8++URs375dzJ07VzRo0EAMHTpUqKoqzp07J6ZNmybCwsLExo0bXTXezYULF0RYWJhYsWKFGDZsmHjqqacyXf/tt9+Kjh07Znot0n8eERERonfv3mLdunVi06ZNYtCgQaJu3bpi9+7dQgghFEURffv2FS1atBDLly8XmzdvFv369RN169bN9PNZvXq1CAsLE6+88or4/fffxTfffCOaNm0qnnzySaGqqhBCiBkzZog6deqIvn37iu3bt4s1a9YIIYR44YUXRIsWLcT3338vdu/eLb777jvRqlUr8fDDDwtVVcWVK1fE+PHjRVhYmNi/f7+4cuWKEEKIt956S9StW1fMmDFDbNu2TXz88ceiVq1aYtasWbm+ZkIIcf36dREWFiY+/PDDPN1eVVXRt29f0alTJ7FmzRqxa9cu8fXXX4uIiAgxdOhQ1+vVpUsXMXjwYLFlyxaxfft2MWzYMFG7dm1x9uxZIYQQp0+fFhEREeLRRx8VGzduFOvWrROPPPKIaNWqlbh586YQQoiffvpJ1K1bVyxcuFDs3r1bfPvtt6Jhw4ZizJgxd63xgw8+EJGRkcJqtQohhOjUqZN47rnnMt0m/f3SuHFjMW3aNLFz507x8ssvi7CwMNG5c2fx9ttvi507d4qJEyeKsLAwsW7dOiGEEKmpqaJ79+6iRYsW4ttvvxVbt24VEyZMEGFhYeKzzz5zHT8qKko0btxYDBs2TGzZskX8+OOPIjIyUjz22GOu26xatUqEhYWJN954Q2zdulXMmjVLNGzY0PU+zovsPu+zZ88WNWvWFG+//bbYunWrWLJkiYiMjBSPPPKISE1NFUI434cNGjQQTZs2FV9//bX47bffXO/7I0eO5Ph4H3/8sWjYsKF4/fXXRWRkpAgPDxfPPPOM+Pfff3O8j6qqol69emLUqFF5ek5C5H6OyOm53/n5XrFihahZs6Zo3769WLBgQaaf89atW4UQQuzfv1+EhYWJ8ePHi/3797ten+w+pxnP9aqqiqefflpERESIr776SmzdulW89dZbIiwsTKxatUoIIURiYqJo1qyZGDVqlNixY4f47bffxGOPPSYaNWokEhIScny9cvuMpT//3M6/hw8fFnXr1hVPP/202LJli1i8eLFo1qyZCAsLEzNmzMjx9V+xYoUICwsT586dE3a7XdjtdmGz2cTNmzfF999/L8LDw8ULL7zguv2ePXtcj/Prr7+KVatWifbt24tu3bq53nOff/65aNq0qVi+fLnYvXu3mDt3rqhdu7aYPn16jj+HvChSXTl3ExoaCrvdjri4OISGhma67s8//4TZbMawYcNgNBoBAMHBwTh06BCEEKhevXqOza/9+/fP0m97p5CQEMyfPx++vr6u/z///PPYunUroqKicq3d39/f1RxcvXr1bLtwtm7dip07d+Ljjz92tTC0atUKZrMZ06dPx+DBg1GjRg0AzkGq8+fPdz2n5ORkjB07FkePHkV4eHiWY586dQrLly/HK6+8gmHDhrmOXbJkSYwZMwZbt25Fu3btXN1Y2TUl5ubhhx/G+PHjM3XnrF27Fl27ds1y21mzZsFoNGLhwoWu59C+fXt0794dH374IZYvX46tW7fi4MGDmDdvHtq2bQsAaNGiRabWLCEEPvroI7Rp0wYfffSR6/LKlSvjqaeewu+//4727du7XrOxY8eiSZMmAACbzYbk5GS8+eabrhojIyORlJSEDz74ADdv3kTp0qVRunRpALffN2fOnMF3332Hl19+2fVatm7dGpIkYc6cOejfvz9CQkLu+lpduXIFAPL8Gl+/fh0+Pj6Z6m/WrBnOnz/vGnR869YtnD59GiNGjEC7du0AAPXr18esWbNcY3xmzZoFHx8fLFiwwPW6t2jRAh07dsQXX3yBsWPHYs+ePShfvjwGDBgAWZYRGRkJX1/fTL/538nhcGD16tXo3r276/PXu3dvzJw5E1euXMkyTqZNmzZ46aWXADhb4NasWYPixYtjwoQJAJzdWT/99BP++usvPPzww1i5ciVOnDiBpUuXIiIiwnUMh8OBTz/9FP369UNwcDAAIDAwEJ9++il0Oh0AZyvSzJkzERsbi5CQEEyfPh1RUVF49913XccxGAyYOnVqnn4W2YmPj8dnn32Gxx57zPUcACAsLAwDBgzAihUrMGDAAABAamoqJk2ahF69ermea8eOHTF37lxMmzYt2+MfO3YMKSkpCAwMxOzZs3Hp0iXMnj0bAwYMwA8//JBtl2FsbCysVmue32N5PUfklRACI0aMwH/+8x8AQOPGjbFp0yZs2bIFbdq0cX2eSpcunemcfOfn9E47d+7Etm3bMG3aNNfntk2bNkhNTcVHH32E7t2749SpU4iNjcXgwYPRqFEjAEDVqlWxbNkyJCcnIyAgIMtx8/IZy1jj3c6/c+bMQfHixfHZZ5/BYDAAcH5njB49Ok+vXadOnbJcFhoaiv79++PFF190XTZ16lRUqVIFc+bMcb3fGzRogG7durnec3v27EF4eLhrbGNkZCR8fHxcr0FOP4fcsCsnjUhr1s1uQGHTpk2RmpqK7t27Y+rUqdi3bx9at26NkSNH5joAsXbt2rk+drt27VyhBHA2Gev1euzdu/cen0XO9uzZA71enyUkpY+p2bNnj+uyjEELgOvElJqamuOxAWTpUunWrRt0Ol2+zJbp2LEjdDqdqzvn+vXr2LdvH7p3755tPVFRUZmeg16vR7du3XD48GEkJydj3759MBgMaNOmjes2vr6+mU6Op0+fxtWrVxEdHQ2Hw+H607RpU/j7+2PHjh2ZHjfjz9poNGL+/Pno2rUrrl27hl27dmHp0qX47bffACDHAbu7du2CECLLY0ZHR8NqtWbpjsqOXu/8fSO7bqnslCpVCgsXLkTjxo1x8eJF7NixA4sWLcJff/3lqjM0NBTVq1fHW2+9hbFjx+Knn36CqqoYN26cK9Du2rULkZGRMJvNrrr9/f3RpEkTV1Nz8+bNcebMGfTp0wezZs3CoUOH8Mgjj9x19tiWLVtw8+ZNdOzYEQkJCUhISEB0dDRUVcX333+f5fbp4SK9bsAZotJJkoSgoCAkJiYCcL5fypUrl+l+gPOzYbVaceDAAddl9erVc52kAbiCZWpqKs6dO4fLly9n+Yxl19V4L/7++2/YbLYs7/UmTZqgXLlymT67er0+0+3MZjPatm1713PJ6NGjsXjxYowbNw5NmjRBz549MX/+fCQmJmLhwoXZ3if9NVAUJU/PoSDOERl/XkajEcWKFcvUxZqTu52T//jjD0iShHbt2mX5/N24cQMnT55EjRo1UKxYMQwfPhwTJkzApk2bEBoaitdee831frhTXj5j6XI7//7555+uwJvuoYceyvS+vJvPPvsMy5cvx7fffov//Oc/MBgMePHFFzFu3DjX2JLU1FQcOHAA7dq1gxDC9TpUqFAB1apVc537mjVrhh07dqB///744osvcOrUKQwcOBA9e/bMUy05YYtJmmvXrsFsNrt+M8ooIiICc+fOxYIFC/DVV19h7ty5CA0NxfDhw3OdjpsxcOQk4whpwDkLJSQkBAkJCff0HO4mPj4eISEhWd686Y+dfpIGAB8fnyz1ADl/0aX/tnvn89Dr9QgJCcl07Pvl7++Ptm3bumbnrF+/HtWrV0eNGjWynNTi4+OztHoBzi8pIQSSkpIQHx+P4ODgLMEy43NIH6z79ttvu2ZKZHT9+vVM/79zwNi2bdvwv//9D6dPn4afnx9q1arlej+IHOb1pz9mTl9m6eOa7qZMmTKQJAmXLl3K8Tbx8fHQ6/WumlevXo2PP/4YV65cQXBwMGrXrg2z2ey6vSRJ+PLLL/HZZ59h06ZN+OGHH2AwGNCxY0e8/fbbCAoKQlxcHNatW5elPx64Pauka9euUFUV33zzDT799FPMnDkT5cqVw6uvvppt6xcArFixAgAyDeJNt3z5cowYMcIVxgBkO8Pibp/D+Pj4LO9d4Haoyfg5vNtnI73vvXjx4tke536lf75yek9n/HyFhoZmei3S60l/X2Unu7El6V9Ax44dy/Y+QUFB8PPzw+XLl3M8bkpKCux2O4KCggrkHJHx/Qk4fxY5fa4yutvAzri4OAghXC0hd7p+/Tpq166NJUuW4LPPPsPPP/+MZcuWwWw2o2fPnnjzzTddrXp3yu0zli6382/6uTyj9NcxL8LCwlwtXY0aNYLD4cCECRPg7+/vOu8kJCRAVVXMmzcP8+bNy3IMk8kEAHjmmWfg5+eHFStW4KOPPsKUKVNQo0YNvPnmm2jevHme6skOgwmcTWe7d+9Go0aNckydbdq0cTXp7dq1CwsXLsS7776LBg0aZPpt7H7cedJQFAWxsbGZTnB3/maSl98MMgoKCkJsbCwURcn0HNO/XPP6ps7p2ABw48YNlCtXznW53W53NXHnh65du+K1115DTEwM1q1bl+OXd1BQEG7evJnl8vS1L0JCQhASEpLt65HxZxEYGAgAGDNmDCIjI7N9nJycP38ezz//PDp27Ig5c+agQoUKkCQJS5YsyTJoM6P0x/z666+zPYGWLVs2x/umCwkJQd26dbFt2za89tpr2bbqzZo1y9WCc/bsWYwdOxaDBg3C008/7foN7cMPP8zUQlOqVClMmjQJEydOxLFjx7B+/XrMmzcPISEhmDhxIgICAtCyZUsMGTIky+Nl/LLs3r07unfvjsTERGzfvh3z5s3Da6+9hsaNG2fpNrh58ya2bt2abZfo33//jY8//hi//fZbts3TeRUUFIRz585luTzj+yUv0n9bvnONmAddMyb9fXbz5k1UrVo1S40ZZ7hlF0Bu3ryZJSylczgc+Omnn1C5cuUsLUYWi+Wu05Rbt26N3bt3w2q1ur6oMvruu+8wefJkLF++/J7OEQ96rnsQAQEB8PX1zbGlqFKlSgCcXTdTpkyBoig4ePAgfvzxR3z77beoWLEinnnmmSz327dvX54+Y3kRHByc5fwmhLhrd+jdvPnmm9ixYwcmTZqEZs2aITQ0FH5+fpAkCU899VS259n08CTLMgYMGIABAwbg1q1b+P333/H555/jhRdewI4dO3IMablhVw6AZcuW4caNGzkudDV58mQ8+uijEELAx8cHUVFRrsXU0n9jeJBpizt27Mg0RXbDhg1wOBxo1qwZAOdvgFevXs10nzvfzLk140VGRsLhcGD9+vWZLl+9ejUAZx/t/Ur/0l67dm2my9euXQtFUR7o2BlFRUXBaDRi8eLF+Pvvv3MMJk2bNsVvv/2WaaaHoihYu3Yt6tWrB6PRiBYtWsDhcGDz5s2u29hstkzdM1WrVkXx4sVx8eJF1KtXz/WnVKlSmDp1Ko4cOZJjrYcPH4bVasWwYcNQsWJFVzhIDyXpv9nd+b5J73+OjY3N9JgxMTGYPn36XX/zzejpp5/GiRMnsHjx4izXnTp1CitWrEDLli0RGhqK/fv3Q1VVvPDCC64TpqIoru4XVVWxf/9+tGzZEgcPHoQkSahduzZGjx6NsLAw12cgMjISp06dQu3atV11h4eHY8GCBa4uuJdeegnPP/88AOeXwMMPP4wRI0bA4XBkaYECgB9//BEOhwNPPvkkmjVrlunPk08+CX9//0yz6e5H06ZNcenSpSzryaxevRoGgyHPv3iULl0aFStWzDJ7bOPGjQ9UX4MGDWA0GrFmzZpMl+/btw+XL1/O9Nu9xWLJFHwtFgu2bt2KFi1aZHtsvV6PWbNm4cMPP8x0+T///IPz58+7zkHZGTp0KOLi4rJd9+LGjRv48ssvUb16ddStWzfP54i8nOvy6n7OyZGRkUhJSYEQItPn78SJE5g9e7brHNq8eXPcuHEDOp0OERERmDRpEgIDA3NsQcrLZyyvWrRoga1bt2bqWt+2bZtrJsy98vf3x7hx45CQkOAaC+Xv7486derg9OnTmV6HGjVqYObMma5W6n79+rnGUxUvXhx9+vTBgAEDkJCQ4Dr/3s/PoUi1mCQlJbmmdKmqitjYWGzfvh3Lli1Djx498NBDD2V7v+bNm+Orr77C66+/jh49esBut+OLL75AcHCwq7kqMDAQ+/fvd00NvBc3btzACy+8gEGDBuHs2bP4+OOP0apVK9fJJCoqCr/++ivef/99REdHY9++ffjhhx8yHSN9sNGWLVsQFBSUpXm2bdu2aNasGd58801cu3YNtWrVwp49ezBv3jz07t37gdY8qV69Onr37o0ZM2YgNTUVTZs2xdGjRzFr1iw0a9Ys0ziOB5E+BmTu3LmoX79+jmuhjBw5Elu3bsXgwYMxbNgwGAwGLF68GBcuXMAXX3wBwPnhbt26Nd58803cunUL5cqVw8KFCxETE+P67VKn02H06NGYMGECdDodoqKikJCQgE8//RTXrl1D3bp1c6y1bt260Ov1mDJlCoYOHQqbzYaVK1diy5YtAG7/FpjeQrJmzRo0aNAANWvWRI8ePfDWW2/h0qVLCA8Px5kzZzBt2jSUL18elStXztNr1bVrV+zcuRPvvvsuDhw4gC5dusDX1xcHDx7EV199hZCQENcJJf2L95133sGjjz6K+Ph4LFmyxNWMn5KSgjp16sBsNmPMmDF44YUXEBoaip07d+Lo0aOuqeojRoxAv3798Nxzz+GJJ56AyWTCsmXLsHnzZsyYMQOA87M0ceJETJ48GW3btkVCQgJmzZqFypUrZ9ulsHLlStStWzfb5202m9G5c2esXLkSFy5cyHW8V0769OmDb775Bs8//zxefPFFlC9fHr/++itWrFiBkSNHun5GuZEkCS+++CJeffVVTJw4EZ06dcKxY8cwe/ZsAPf/y0twcDCGDRuG2bNnw2AwICoqChcvXsT06dNdn72Mxo0bh5deegnFixfH/PnzkZKSctfF6F544QWMHTsWY8aMQc+ePXH58mVMnz4dtWvXznLsjBo2bIhRo0bhk08+wb///otevXohJCQEJ0+exPz582G1Wl2hJa/niLyc6/IqMDAQf/31F/bu3ZvjYNc7tWvXDk2bNsWIESMwYsQIVKtWDQcPHsSMGTPQpk0bFCtWDI0aNYKqqnj++ecxbNgw+Pn54eeff0ZiYmKO3yF5+YzldZG3559/Hps3b8bTTz+NZ555xrUoWsYxJ/eqa9eu+Oabb7Bq1So88cQTqF+/vmsA/iuvvIIePXpAURR8+eWXOHDgAEaMGAHAGeq//PJLhIaGIiIiAteuXcNXX32FyMhIV2vbnT+HPH1O8zx/x8MNHDhQhIWFuf7UrFlTNGrUSPTr108sW7bMNV0tXcYpZEI4pzn27t1bNGzYUERERIhnnnlGHDt2zHX9H3/8Idq3by/q1q0rVq9enWWKW7rspgt/8MEH4o033hANGzYUkZGRYtKkSSI5Odl1G4fDIaZMmSJatmwp6tevL55++mnx559/Zjq+oiji5ZdfFvXq1RPdunVzPeeMU+9SUlLEBx98INq0aSPq1q0rOnfuLL744guhKEqm1ym36XrZcTgc4tNPPxUdOnRwTbn9+OOPhcVicd0mfbrahQsXcjxORhmnC6dbv369CAsLE1999dVd6zty5Ih45plnXD+vJ598UuzduzfT8VNSUsQ777wjmjVrJho2bCjGjx8v3n333Uw/HyGEWLt2rejdu7cIDw8XkZGRYvjw4Zl+9jNmzBBhYWFZ6v/5559Ft27dRL169UTr1q3FyJEjxZ49e0TNmjXF4sWLhRBCXL16VTz66KOibt26YuLEiUIIIex2u5g1a5brtWzbtq2YOHGiiI2NzdPrltHq1avFwIEDRYsWLUT9+vVFly5dxJQpU0RMTEym2y1evFh06NBBhIeHi/bt24uxY8eKTZs2ibCwMLFlyxYhhBBnzpwRI0eOFC1atBB169YV3bp1E0uXLs10nMOHD7umWzZs2FA89thjYvPmzZlus3DhQtG1a1dRv359ERkZKUaNGiUuXryYpfa///5bhIWFiS+++CLH57d7924RFhYmpkyZku37RQiR7TTKOz/ft27dEuPHjxfNmzcX4eHhokePHuL777+/632EyP49vXTpUtGpUydRt25d0atXL/H999+LsLAwsWHDhhyfR0Y5LW3wzTffiK5du4q6deuKVq1aiUmTJom4uDjX9envw02bNomoqCjRoEEDMWTIEHH06NFcHzP9Pd6gQQPRvHlz8dZbb+X5/bZlyxbx7LPPilatWonw8HDRqVMnMWHCBHH58uVMt8vLOSIv57qcziN3/ny+/PJL0aRJE9GgQQNx6dKlHD+nd94vOTlZ/O9//xNt27YVdevWFdHR0WLq1KmZ6jxw4IAYOnSoiIyMFPXq1RN9+vQRGzduvOvrlJfPWF7Pv4cPHxYDBw4U9evXF1FRUWL16tWiZcuWeZounNP59+jRo6J27dri0UcfdX0f7ty5U/Tv31/Ur19fNG7cWAwePDjTedRut4sZM2aIjh07ivDwcNGiRQvxxhtvZDq/3PlzyAtJCO5yRESUH9asWYM6depkGguyZcsWPPfcc/jxxx8LdHn29AX7jh8/XmCPQVQYilRXDhFRQVq9ejWmTZuGl156CWXKlMG5c+cwY8YMREZGarZnDJGnYTAhIsonkydPxtSpUzFlyhTExMQgNDQUXbp0ybRwFRHdHbtyiIiIyG1wujARERG5DQYTIiIichsMJkREROQ2GEyIiIjIbTCYEBERkdtgMCEiIiK3wWBCREREboPBhIiIiNwGgwkRERG5DQYTIiIichsMJkREROQ2GEyIiIjIbTCYEBERkdtgMCEiIiK3wWBCREREboPBhIiIiNwGgwkRERG5DQYTIiIichsMJkREROQ2GEyIiIjIbTCYEBERkdtgMCEiIiK3wWBCREREboPBhIiIiNwGgwkRERG5DQYTIiIichsMJkREROQ2GEyIiIjIbTCYEBERkdtgMCEiIiK3wWBCREREboPBhIiIiNwGgwkRERG5DQYTIiIichsMJkREROQ2GEyIiIjIbTCYEBERkdtgMCEiIiK3wWBCREREboPBhIiIiNwGgwkRERG5DQYTIiIichsMJkREROQ2GEyIiIjIbTCYEBERkdtgMCEiIiK3wWBCHsXhcODrr79Gnz59EBERgebNm2Po0KHYtWuX6zY1a9bEypUrczzGzJkzER0dXRjlEhHRPWIwIY9htVoxePBgLFiwAIMGDcKqVauwYMECVKtWDUOGDMFPP/2Up+MMHToUy5cvL+BqiYjofui1LoAor6ZPn47jx49jzZo1KFOmjOvyN954A0lJSXj33Xfz1BLi5+cHPz+/giyViIjuE1tMyCPY7XasWLECffr0yRRK0r300kuYN28ezGYzAODMmTN46qmnUK9ePbRp0wZz5sxx3TZjV87FixdRs2ZNbNiwAf/5z38QHh6O6OhoLFu2zHV7m82GyZMnIzo6GuHh4YiMjMSoUaMQExNTwM+aiKjoYTAhj3DhwgXExcWhUaNG2V5fqlQp1K9fHzqdDgCwePFi9OrVC+vWrcMTTzyBjz/+GH/88UeOx3///fcxfPhw/Pzzz2jfvj0mTZqECxcuAAA+/PBDbNy4ER988AE2bNiADz74ALt27cJnn32W/0/UW6kOQLEBqh0Q6t1vq1gAeyJgiwdssYD1FqAqEEJAqCqEUJ3/zvAnJ3fe7m63JSL3wK4c8gjx8fEAgKCgoDzdvn///ujVqxcAYMSIEfjyyy9x+PBhtGjRItvbP/XUU+jQoQMAYPTo0ViyZAkOHDiAChUqoF69eujSpQuaNGkCAChXrhxatmyJEydOPOCz8hJCAVQFkHWApLt9uWoDUq8CyWedf1KvArY4wJHgDB32tD+2eMCekPb/BEA4sj5Gz7NQTGVhSU7KsQxJkiFJEiRJAtL+zvp/GZIsQ5adt3U9hQyBJePlRFT4GEzIIxQrVgwAEBcXl6fbV65cOdP/AwMDYbVac7x9tWrVXP8OCAgA4Ow+AoCePXti586d+Oijj3D27FmcPn0aZ86ccQWVIkNVAKiAbHD+X7ECCceBxBNAynkg+TyQcuH235brAAqvhcLZknIPd5CktIDiDCqyrHOGFp3sCjnO44q0mzOwEBUGBhPyCBUqVEBoaCj++usvdO3aNcv1//77L9577z2MGzcOAFxdOhndrRnfaDTmePsJEyZgw4YN6NWrF6Kjo/H8889j/vz5uHbt2v0+HfcmBCDsgJz2mggFSDoDxO4H4g4BcYeB+ENA0uncu2XcmRBQFQWAAiWbqyVJgiTroNPpIOt00On0kNJaWhhWiAoOgwl5BFmW0bdvXyxatAhPP/10lgGwX3zxBQ4dOoRy5crl6+PGxsZi2bJlmDZtWqZAdPr0afj6+ubrY2lGVQAIQNY7x4HE7AVu7ATiDjqDSMIxQM25tclbCSEgFAdUJXPXkpwhqMg6nbOlhWGFKN8wmJDHGD58OLZt24b+/ftj1KhRaNSoEeLi4vDtt9/ihx9+wLRp0/I9LPj7+yMgIAC//PIL6tatC4vFgsWLF+Off/5BgwYN8vWxCo1qByQ9IEnO8R3XfwdubANu7ABi/nSODaEcqYoCVVHgwO3XSZbTwopeD51eD1nWMagQ3ScGE/IYPj4+WLx4Mb788kvMmzcPly9fhtlsRp06dbBo0aICGfNhMBgwffp0fPDBB3jkkUcQFBSEZs2a4eWXX8acOXOQmpoKHx+ffH/cfKUqzhAiyc7xH9d+dYaQG9udY0QKcRyIt1JVBaqqwGF3hhVJktNCigF6vbMLiEGFKG8kwflzRN5HtTsHqap2ZxC59BNwaa1zdown6nkWjlxm5bgzWda5gopOr2fXD9FdsMWEyBsI4RykKusByzXg4o/OIHLtF8CRrHV1RZ6qKlBtCuw251gdWaeHXq+H3mCEpGO3D1FGDCZEnkqoAIRz7ZCYP4FLPwKX1gCxf2tdGeVCVRywKQ7YrBZIsgy9wQgDQwoRAAYTIs+jOpwtIwnHgNMLgHPfAikXta6K7pNQVditFtgZUogAMJgQeYb0MSOpV4AzC4GzS5xTecmr5BZSGFCoKGAwIXJX6S0j9kTg3DLg7GLg+lZwFk3RcGdIMRhNzpCSNsOHIYW8FYMJkbtJDyTXfgNOfe4cxFoEFzij24SqwmZJhc2SCr3BAIPRBJ3ewIBCXonBhMgdpC/trqQC/34BnJgNJJ7UtiZySw67HQ67HbIsQ280wWA0ua5jSCFvwGBCpKX0sSOJp4DjnwBnFgEOz1yrgwqXmqkVxQiDyQSdTs9WFPJ4DCZEWlAdzpVYL/8MHJ/uXASN6D457DY47DbIsg4Gkwl6g3MDRgYU8kQMJkSFSSiAIxU4+anzT/I5rSsiL6KqCqypKbBZUmEwmV3dPAwo5EkYTIgKmhAABGBPAI5+BJyYBdjjta6KvJgQwtnNY7XAaDTBYDIDYEAhz8BgQlRQ0gOJNQY48oFzhg2Xh6fCJARsVgtsVgsMJjOMRpNzQ0cwpJD7YjAhym/pgcQWCxx+1xlIFIvWVVERl74misFogtFkdq2Gw4BC7obBhCg/CRWwxQH//A84+RmgpGhdEVEmdpsVdpsVeqMRRpOP63IGFHIXDCZE+UF1OKf+/vOec9ovu2zIzTlsNjhsNmcLitmH04zJbTCYED0I1e7c3ffsIuDv8YDlqtYVEd0Tu80Ku90GI2fxkJtgMCG6H0JxBpKbu4E/XwRi92tdEdH9S5vFY7daYTT7wGA0sgWFNMNgQnSvhAqkXAT+HA1cXKV1NUT5RggV1tRk2G0WmHx8uZIsaYLBhCivVIdzds3ht4HjMwDVpnVFRAVCVRSkJiVCbzDCZPaBALt3qPAwmBDlJn2339MLgAPjAesNrSsiKhTpS907u3c4/oQKB4MJ0d0IBUi5AOx6Cri+VetqiDRhs6TCYbPB5OsHWZYZTqhAMZgQZUd1OFfIPPoRcGgSF0ijIk9VFaQmJThXkOUS91SAGEyI7iRUIOEY8MeTQOxfWldD5FbsVgsUuw0mHz/IOh3DCeU7BhOidKodgAAOTnS2lAiH1hURuSVVVZGanOhanA1g6wnlHwYTonS39gK7hgCJJ7SuhMgj2G1WOBx2mH18odMbOLWY8gWDCRVtqgOAAPa/Chyf6fw3EeWZUFWkJidBbzQ5pxYznNADYjChoktVgORzwPa+QOzfWldD5NEcNisUux1mX449oQcja10AUaETqvPvs4uAnxswlBDlEyGcY0/sNmva/9kCSfeOLSZUtKh254qtu58Fzn2rdTVEXslmSYXicMDs68euHbpnDCZUdAgViDvs7LpJOq11NUReTXHYkZIYD7OvP7t26J6wK4e8n1Ccfx/7GNjYjKGEqJAIIdi1Q/eMLSbk3VQ74EgBdvQDrqzXuhqiIoldO3QvGEzIe6kOIOkMsKUrkPSv1tUQFWnOrp0EztqhXLErh7yTUIGrm4ANTRlKiNzEnbN2iLLDYELeJb0P++gU4PfugD1B23qIKAubJRXW1BQIITjuhLJgVw55D9UBQAX+eBo4u1jraojoLuw2K1RV5bgTyoLBhLyDagdsscDvjwC39mhdDRHlgeKwIzUpEWY/fwDcCJCc2JVDnk8ozvVJfo5gKCHyMKqqIDUpAaqqsFuHADCYkKcTKnBpLbCpJZB6WetqiOg+CCGQmpQIxWFnOCEGE/JwZxYC2/oAikXrSojoAVlSkjljhxhMyIMdnQrsGnp7ZVci8nicsUMMJuRZ0k9Uf48D9r8KgCcuIm9jt1lhSUkGwGXsiyIGE/IcQgUggN3DgCMfaF0NERUgxWFnOCmiGEzIMwjF+Wf748C/87SuhogKgTOcJAFgOClKGEzI/akOQLUBW7oBF5ZrXQ0RFSLF4WA4KWIYTMi9qQqgWoFfop173xBRkaM4HLAkM5wUFQwm5L6EAggb8Ftn4OYurashIg0pigOpyYkAGE68HYMJuSehOltLtnQHbuzQuhoicgOqojCcFAEMJuR+hOpsLdnaE7j2q9bVEJEbURUFqUmJALjOibdiMCH3kj4lePtjwJX1WldDRG7Iub8Ox5x4KwYTch/pJ5idA4CLP2haChG5N1VVOCDWSzGYkPuQJGDXEODcMq0rISIPoCgO1yJs5D0YTMh97Bnu3JSPiCiPFIcdVkuq1mVQPmIwIfdw8C3g1BytqyAiD+SwWWFjOPEaeq0LoCJOKMDZJcDhd7WuhIg8mM1qgSTL0BuMkCRJ63LoAbDFhLSjOpxrlOx+RutKiMgLWFNToDjsHAzr4RhMSBuqHUg+C2zt5fw3EVE+sKQkQ1UUhhMPxmBChU91APZE51LztlitqyEiL5OakgShqgwnHorBhAqXUJ1/fu8OJJ3Wuhoi8kZCIDU5CRBcHdYTMZhQ4ZJk4I9BwM0/tK6EiLyYECrXOPFQDCZUuP4eB5z/TusqiKgIUBQHpxF7IAYTKhyqApxbChz5QOtKiKgIsduscNht7NLxIAwmVPBUO5B4ktOCiUgTlpRkDob1IAwmVLCECqg2YGsPwMH+XiLSRmoKN/zzFAwmVKCEEMCJWc4WEyIijQjVORiWq8K6PwYTKjBCqIBqgaj9KtD0M63LIaIiTnHYYbOkstXEzTGYUIEQqgIknIKy81mIq1uBGsMhuv4D6AO1Lo2IijCb1cJl690cgwnlu/SWEuWfDwElBeqx6VCOzQICwyB6XwZKtNW6RCIqwiwpKRBcfM1tMZhQvpMkGeqRjwHrTddl4spmKH++BjiSITr8AtTnbsJEpBXBxdfcGIMJ5SshVKgXfoK49WfWK5POQNk32nld+BvAQ7sA2Vz4RRJRkacqDthtVraauCEGE8o3QlUAy3WopxflfCNHMtTD70M59SVE8aYQfa4AIQ0LrUYionQ2SyrXN3FDDCaUfyQJypGpznVLciEurIay/w3nvzvvAWq9XNDVeZyrCXo0+aAadp/1yfE2X+8KRs23w3AxTp/r8f69acDwb8ui0fvVEDm5Gp5fVhYXYg2ZbvPJr8XRYkpVRH1SBSv/zjxQWQigz9yKWH0w4P6eEJEbYpeO+2EwoXwhhApxbjmQcA/rlcQfhbJnFET8UYiIj4CojeBb0ulKvB5DF5VDolWX423O3DLg419C83y8/l9WRFyKDh8/ehVvd7+GUzeMGLqoHCx257oOW0744cs/QjCu8w0MbRGLt34qhZPXja5jrD0cAFUAj9RLfLAnR+RGVFWBzcopxO6E3wL0wISqAMkXoJ69j8357PFQ/54EcXYZROmOEL2vAP7V8r9ID6EKYOXfgeg1pxJuJefcCqKowLgfSiPYV8nTcWduKQ5/k4KvBl9E+7BkPFw3CR/1uYJUu4zDl53jfHae9kXLqinoUT8Rg5rFoVoJG/aktdbYFGDar8Xxcoeb4PpU5G3sVitURWE4cRMMJpQPhLMLRzju8/4q1LNLoR58B9D7QnQ7AlQdkq8Veorj10yYuKYkejVIwIe9r+Z4u/k7Q3AzWYdhrWNyPaYQwMaj/ng0IgE+htsn3nplrdj+ymk0qeTcfVWSAJP+9vUGnYAinCnkm73BKBvsQNvqKff71IjcWnqXDsOJ9hhM6IEIIaCeWQIkn3/wY8Xsh7L3JSD5HESzL4BW99EC4+HKBNmx6cWzGNf5BswGNdvbnLxuxKzfi+N/Pa5lCho5uRinR6JVh7JBdry9tiQiJ1dDvXer4/+WlsXVhNutMg3Lp2LPWR+cuWXAgYtmnLhmRKMKqUi0yPh8WzG81vHmXR6FyLMJocKamsIl690AgwndN+fqricgzv+Yfwe13oTy1ziIi2uBSv+B6HkOMJfOv+O7uWAfFaUDc255cqjA2B9K4z8R8YisnJqnY8amOMPHR5tL4FqiHh/3vYJ3e1zDkSsmDP66PFJszhNxlzpJ6FQ7Cd0/rYzBX5fHqKhbCC9rxbwdIYislIq6ZSx4f0MJdJlVGaOXl0ZMCk8f5F0cdhscdhtbTTTGMws9EOXYDADZ/2Z/34QD6qn5UA5/CJhLQvQ8A5Trmb+P4aE+31oMCRYZr9xD64UtbRhKqL8Dsx6/jNbVUtCzfiKm/+cKzsUY8dMh5+wbSQLe6X4d+8edwl/jTuGZVrG4lqDH4j3BeCn6JpbsDcbO076Y+dhlyDIwaU2pgniKRJqypjq7KxlOtMNgQvdFCBXi/Eog5VLBPcaNnVD2vgxYbkC0XQE0/bzAHssTHLliwufbi+G/3a/BqBdwqM7BsgCgqhKUHPKhv9F5RdvqyZAztFI3LG9BgEnBkSumTLc36gV0aWeG6b8VR/fwRFQNtWPDEX/0qJ+AGiVteLJZHH457p/jYxJ5KiEEbJZUduloKPfFD4juIIQKWGOgnvu+4B8s9TKUfa9ADhsOqcZzECXbQtrQHHAkFPxju5lfjvvDrsh4alGFLNd1mlkFkZVSsOipi1muq1DMDgkCNkfWE62iSjDnME7l5HUjfj4SgPUjzwAAbiXrEezjbH4JNCtwqBJiU3QI9c/bzCAiT2G3WaE3GiHLOgYUDTCY0D2TJBnKic/ztJBavlBtUI/NgIj7B3LN4RB9LkPa0h24vqVwHt9NPNY4Du3DkjJdtuWEP2b9Xhyf9buEysWz/3n4GQWaVkrFxmMBeLnDLRjTZt78cdoHKXYZTSpmP1blo82hGNg0DqUCnMGjuJ8DN5Kcp4wbSXroJJHn6cpEnsaakgIffy4mqAV25dA9EaoC9eYeiFv7Cv+xr/4C5c8xgD0JInoT0OB/hV6DlkoFKKhX1prpT7lgOwAgrJQVVUPtrtv+fdGM8zG3V3V9ucNNXE/U4dlvyuH3k75Y+XcgXllZBg3KpSK6ZlKWx9pz1gd/X/TJNB25fVgyvv8rCFtO+OHzbcXQtkYy9DyDkJdSVYV76WiEpxW6N0KBemKedo+fdAbK3tHOYFR3HNB5DzcCzMbj8yvi063FXP+PqGDBwicvQhXAi9+VxeSNJRAVlowvBl5yjSfJaMrmUAxrHYMA8+1BJIObxaFppVS8srI07IqEt7tdL4ynQqQZmyUVEILhpJBJgq845ZEQAurphRDnV2ldCgBAqtADcrUnAXsipF86ALF/aV0SFZSeZ+EwlYUlOWvrDlFB0huMMPv6aV1GkcIWE8oTIRQg9TLEhZ+0LsXFtRGgEBCddwO1XtW6JCLyMg67DYriYKtJIWIwoTyRJB3UE3MfYNn5AhJ/DMreURBx/0BEfAhEbwLf1kSUn7gibOHiGZxyJVQFaswBiNgDWpeSPXsC1ANvOzcCLNUBos8VIKCG1lURkZdQFQ6ELUwMJpQrSdZB/XeB1mXkIm0jwANvAzpfiK6HgapDtS6KiLyEzZK3LSDowTGY0F0JVYF6bSuQdEbrUvJExP7t3Agw6SxEs3lA60JYBI6IvJ4QAnYrW00KA4MJ5Uo9vVjrEu6N9SaU/eMhLq4BKvZN2wiwrNZVEZGHs9ksWpdQJDCYUI6EUCAurQMsHrhehXBAPfUllMOT0zYC/Bco31vrqojIkwkBu9XCVpMCxmBCOVPtUM99p3UVD0Tc+APK3tGA5TpEm++ByDlal0REHsxmZatJQWMwoWwJoUI9txywJ2pdyoNLvQJl36sQV7cA1YdBdDsKGIO1roqIPJTNmspWkwLEYEJZCCGc+9G40WJqD0y1QT02E8rRmUBANYheF4GSUVpXRUQeyG61cqn6AsRgQtkQUM+vAFSr1oXkO3H1Fyj7XsuwEeAHWpdERB6IXToFh8GEslIsEJc3aF1FwUk+m7YR4B6g7lig815uBEhE9yR9wTW2muQ/BhPKRAgF4sJqQPHy3waUFKiHJ0M5OR+iWAREn6tASCOtqyIiD2KzctG1gsBgQpmpDqgX12pdRaERF3+C8td4QCgQnXcBtV7TuiQi8hAOm42tJgWAwYRcnOuWrAccXjAT514kHIey96W0jQAnA9G/gB8NIsoLO8ea5Duefek2IaBe+FHrKrRhT4B64B2oZ5dClIpydu1wI0AiyoXd5n2TBLTGYEIAnHviiCu/ALYYrUvRkApxdhnUA5MAnQ9Et8NAtWe0LoqI3Bx3Hs5fDCbkJElQz6/Sugq3IGIPQNk7Ckg8AxE5B2izQuuSiMiN2a1sNclPDCbkbC25sQuwXNW6FPdhveXcCPDCT0CFPhC9LnAjQCLKlhAqFIedrSb5hMGEIMk652Z9lJlQoP77lXMjQFNx50aAFfpoXRURuSGb1QpJkrQuwyswmBRxQgiIlMsQcYe1LsVtOTcCfNm5EWDr74Fm87QuiYjcjKo4oCgOtprkAwaTIk9AvbhG6yLcX/pGgFd+Bao9A9H9GDcCJKJM7Gw1yRcMJkWd6nDuuku5U21Qj8+CcnQG4F/VuRFg6Q5aV0VEbsJht0GoqtZleDwGkyJMqArE1d8AJUXrUjyKuPorlH2vAvZEiPYbuBEgEbnYOHX4gTGYFGGSrIN6eb3WZXim5HPOjQBvpm0E2GUfNwIkIji44NoDYzApooRQIeKPA0lntC7FcympUP+ZDOXEPIiQhmkbATbRuioi0pAQglOHHxCDSRElSTLUS0Vns76CJC6tzbAR4B9Ande1LomINGS32TgI9gEwmBRRQrFA3PhD6zK8R8JxKHtHQcQdhmjwP6DDr4Cs17oqItKAs8WEg2DvF4NJESRUB8S17YBq17oU72JPhHrgbahnvoUo2R6i1xUgoKbWVRGRBhw2G7tz7hODSREkyXqI61u1LsNLCYhz36VtBGiG6HYQqPas1kURUSGz29mdc78YTIogYYuHiOVKrwUp80aAnwNtVmpdEhEVIlVRoKoKW03uA4NJESNUBeLaFgDs/yxwro0AVwMVejs3AvQpr3VVRFRIHDab1iV4JAaTIkaSdVCvshun0AgF6r8LoBz6ADAWh+hxEqjQV+uqiKgQsDvn/jCYFCFCCIjUq0DSv1qXUuSIm7ug7BsNpF6DaL0MaDZf65KIqIAJVYXi4MZ+94rBpEhRoV79Vesiiq7Uq1D+fA3iyi9AtaEQ3Y8DxmJaV0VEBchuZ3fOvWIwKUIkSQdxjd04mlJtUI/PhnJ0OuBf2TnuhBsBEnktB4PJPWMwKSKEEBBJ54DUq1qXQgDE1d+g7HsNsCc4NwKMmKJ1SURUEISAorA7514wmBQVQoW4uUvrKigj10aAu4DarwJd/gT0vlpXRUT5TLFzMct7wWBSREiyDurNfVqXQXdSUqH+M8W5EWBwA4jel4HiTbWuiojykcNh5+yce3BPwWTQoEF4/fXsNyh7/fXXMWjQoDwfa+bMmYiOjnb9/+TJk9iyZcu9lJPrMbNz8OBBPPfcc4iMjES9evXQuXNnTJ06FUlJSa7b2O12LFiw4J4e+/Lly1i71n03xRP2RCDxlNZlUA7EpbVQ9o8DVAWi006g7jitSyKifCJUFaqqaF2Gx9CsxWTo0KFYvny56//PPfccDh06VKCPefLkSQwaNAjVq1fHokWLsG7dOrzyyitYs2YNRowY4brdmjVr8P7779/TsceOHYtt27bld8n5QqgOiJt7ALCP060lnLi9EWD994AOv3EjQCIv4bDbOc4kjzQ76/n5+cHPz69QH3PlypWoVKkSXnvtNddlFSpUgNlsxrPPPotjx46hVq1aXvfmkWQ91FvsxvEIaRsBSpX6Qq7SH+h9BdLGNkDiMa0rI6IHoDjsMJrMWpfhEQqsxaRmzZpYvnw5nnrqKdSvXx+tW7fGrFmzXNdn7HaJjo7GpUuXMGvWLFd3UGJiIt566y00b94cjRs3xuDBg7O0qCxbtgydOnVC/fr1MXz4cMTHx9+1JkmScOnSJZw6lblLo2XLlli7di2qVKmClStXYty4ca7nsHv3bqiqijlz5qBz584IDw9Ho0aN8Mwzz+D8+fMAnF1ce/bswapVq1zPyWazYcqUKWjTpg0iIiLw2GOPYfv27a7HVBQFU6ZMQbt27RAeHo4uXbrg22+/vZ+XOldCVSBi/i6QY1NBEBDnvod6YCIgmyC6HQCqP6d1UUT0ALjQWt4VaFfO5MmT0bt3b6xduxYDBw7EzJkzsXfv3iy3W758OUqXLo2hQ4di5syZEELg2WefxYULFzBnzhx89913aNiwIZ544gkcOXIEgLO75Z133sFTTz2FH3/8EY0aNcKSJUvuWs/jjz8OvV6P7t27o1+/fvj444+xbds2KIqC6tWrw2QyoWvXrhg/fjwAYPv27YiIiMDChQsxf/58vP7669iwYQNmz56Ns2fP4oMPPgDgDFkRERF4+OGHXd1T48aNw44dO/DRRx9h1apVePjhhzF8+HDXOJpvvvkG69evx7Rp07BhwwYMHDgQkyZNwr59+duyIYQKEf8PoKTm63Gp4InYg1D2jAIST0M0/RRo+4PWJRHRA1Ac7M7JiwINJr169ULPnj1RoUIFDB8+HIGBgfjrr7+y3K5YsWLQ6XTw9fVFcHAwdu3ahb///huffPIJGjRogGrVquHll19Gw4YNsXDhQgDAokWL0LVrVwwYMABVqlTBsGHDEBUVddd6KlWqhB9++AGDBg3C9evXMWfOHDzzzDNo3bo1vvvuOwCA2WxGQEAAAKBEiRIwGo2oWLEiJk+ejKioKJQrVw4tWrRAly5dcOLECQBAcHAwDAYDzGYzihUrhnPnzrnGqTRr1gyVK1fGkCFD0K1bN8yf71yK/Pz58/D19UX58uVRrlw5DBw4EF999RWqVKmSb69/Ouf4EvJIthgo+9+AuPAjUL4nRK+L3AiQyEM5HJw2nBf3NMZEr9dDVbPflVZVVej1mQ9XrVq1TP8PCAiAPQ/zuf/55x8IIbIEDZvNBqvVCgA4ceIEunXrlun6iIgIHDt29774MmXK4I033sAbb7yBCxcuYOfOnfjmm2/w1ltvoVSpUmjXrl2W+0RHR+PAgQOYPn06zpw5gzNnzuDUqVMoVapUto+R3qrTv3//TJfb7XYEBgYCAAYMGIDNmzejXbt2qF27Nlq1aoVu3bqhePHid63/XkmSDHEraxgkDyIUqP9+DRF/DHLtlyB6nIK0czBw4TutKyOie6DY7ZB8OG04N/cUTAIDA5GQkJDtdfHx8QgKCsp0mdFozHK7vDRjqaoKf39/rFy5Mst1GY95Z0gyGAx3Pe6HH36INm3aoEWLFgCcA18ff/xx9O7dG506dcLvv/+ebTCZO3cuZs+ejd69e6NFixZ46qmn8Msvv+Q4PTj9OS5ZsiTLAF9ZdjZSVa5cGRs3bsSePXuwY8cObNmyBfPmzcP777+P3r173/V53AthiwNSL+fb8Ug74uZuKHtHQ1fvdYjW30I63QXYPVTrsogoj4QQUBUFkixzXZO7uKeunLp16+Lw4cOw2TKv/W+z2XDw4EHUq1cvX4oKCwtDUlIS7HY7KlWq5Pozb948/PLLLwCA2rVrZ+kWym268R9//IEvv/wyy+VGoxFms9nVWnHnG+bzzz/H888/j0mTJuHxxx9Hw4YNcfbs2RxDVo0aNQAAN27cyFT/ypUrXWFr4cKF2LhxI1q1aoUxY8bgp59+QosWLbBu3bo8vEJ54xz0eiDfjkduwJK2EeDlTUC1IRDdT3AjQCIPwu6c3N1TMOnbty9UVcXIkSOxf/9+XLp0CXv27MGIESOg1+vRt2/f+y7Ez88PZ8+exc2bN9GmTRvUrl0bo0ePxq5du3Du3Dm8//77WLlypat7aNiwYdi0aRO++OILnD17FosWLcKGDRvu+hijR4/Gzp07MWrUKOzdu9dV/5gxY5CcnIzHH38cAODr61wW/PDhw7BYLChTpgx27NiBU6dO4fTp05g2bRo2btyYKaD5+fnh0qVLuHr1KmrUqIGoqChMnDgRv/76Ky5cuIB58+Zhzpw5qFixIgAgJiYG77zzDn755RdcunQJ27Ztw9GjRxEREXHfr2EWkgwR90/+HY/cg2qHeuIzKEc+AfwrpW0E2EnrqogoDxSHg60lubinYFKsWDEsW7YMgYGBeOGFF9C5c2e8/PLLCA0NxXfffZelK+deDBo0CFu2bMHQoUOh0+nw5ZdfIjw8HC+99BJ69OiBvXv3YtasWa5umPbt22Pq1KlYsWIFHnnkEWzcuBFDh969Wbtt27ZYtGgRbDYbRo0ahc6dO2P06NGQJAlLly5FaGgoAKB58+Zo0KAB+vXrh99++w0ffvghLBYLHn30UQwcOBAnTpzA22+/jVu3buHyZWc3Sb9+/XDixAn06NEDiqJg2rRpeOihhzBhwgR07doVP/zwA9577z1XN83IkSPRt29fvPvuu+jcuTMmTJiAJ554As89l3/TQiVJgog7nG/HI/cirm1J2wgwHqL9z0DER1qXRES5UBWH1iW4PUlw7pLXEvZEKNvzvk0AeSidGXKtFyCXbAXE7Ac2twYcKVpXlb96noXDVBaW5KTcb0vk5nwDglzjDSkrvjJeSgiF3ThFhWJJ2whwLkRwfYjeV4DizbSuiohywMXW7o7BxGtJEPFHtS6CCpG4tA7K/tcB1Q7RaTtQd7zWJRFRNtidc3cMJl5KkmSI+CNal0GFLeEklD0vQcQehKj/LtDhd24ESORmFIUDYO+GwcRLCdUBJJ7RugzSgiMR6sH/Qj2zBKJka4jeV4HA2lpXRURpVEVhV85dMJh4q+TzgGBzYdElIM4th/r3REA2QHQ9ANT4P62LIqI0DCc5YzDxQkJ1QCSeyv2G5PVE3KG0jQBPQTSZDbT9UeuSiAjO7hzKHoOJN5JkiCR241AaW2zaRoA/AOV7QPS6BPhW1LoqoiKNC63ljMHEC0mSDJF0VusyyJ0IFeq/X0M59D/AGALxyAmg4mNaV0VUZHFmTs4YTLwVgwllQ9zcA2XvS0DqFYhW3wLNF2hdElGRJISAEGruNyyCGEy8kLDcAJRUrcsoMFdj7Wg++jj2HE/OdPnvhxLx2Ptn0OTFY+g4/iRm/XQDNsfdB5epqsBXG2/h4bdOodELx9D7v6exZnd8ptskpSoYPfcimr10HH3fO42DZzK/tjfi7Wjx8nFcvJl5c0u3Zbl2eyPAqk9CPHISMBbXuiqiIkdVGEyyw2DiZYRQIRK8d+DrlRg7np1+HompmT/QO44kYeSnFxFWzoSZ/1cBQzoVx9ebY/De0qt3Pd7Mn27gkx+vo0+rYHz6fAW0qO2HsV9dxtq9t8PJ5+tu4vhFKz56phzqVPTBy/MuZgo8s9fcRI9mQSgfaszfJ1uQMm4E6FsRotd5oHRnrasiKlJUlTNzssNg4m2EgEj2voGvqiqwamcc+r53BrcSlSzXz1t/C3UqmvHu4LJoUdsPA6KK4amOxbBqZxxSrNn/VpJqU7Ho1xgMii6GZ7uEonktP4zpWwpNa/hiya+xrtv9cSwZj7UJRptwf7zSpySuxDhw/rqzdeT0VSs2/JmA57qGFswTL2DOjQBfAWzxEFFrgUYfa10SUZGhKlnPZQRwSUgvI8k6r1xY7fglK9755ir6tQtBi1p++L/ZFzJd/99BZeBQMv/mYdBLUAWyXJ7OqJew5LXKKBagz3K/RMvtE4YEwGSQXNcBgKI6jzlt1XUMii6W5RgeJeUClH2jIdccCanWaKBUFLCplfdtBEjkZlRV5cycbLDFxAuJlAu538jDlClmwM//rYax/ykFszHrB7lCCSOqlDYBcI4J2bQ/AV9tuoWuTQIR6KvL9pg6WULN8maUCNJDCIGbCQ7MW38TfxxLRr+2Ia7bNajqiw1/JSI2yYFVO+NQPECHyqWM+OtUCg6cScWTHb1gfIZigXrkIygn5kAE1eNGgESFQFXZYpIdD/41j7IjhApYbmhdRr4L9tMBftkHjIxuxNvRfqxzjE2FUANG9SyRp+Ov25eAMfMvAwDa1fPHI82CXNc93z0UL8+9hNavnkSJID0+GFIWJoOMqSuv47mHQ2G1qxj31SWcuWZDh4YBeKFHCehkz/wtSFz6GUrCKejqvQ7RaTukQ28D/7yrdVlEXkmoKoQQbDW5A1tMvI0tFhBFN4WbDDLmv1QRHz9bDga9hCc+PItrsfZc71evsg++fqUSxj9eCvv/TcFzMy+4BqUVC9BjwSuVsHd6TWyZXAMt6/hj0/4E3Epw4LG2IXh7yVX4mXWYNqw8fj2QiKW/x+byaG4u8fZGgGjwX6DjVm4ESFRAhMqZOXdiMPEyIvWK1iVoKtBXh+a1/NC5cSA+H1kBMYkKVuyMy/V+FUsY0aSGLwZEFcPrj5XCvpMp+PNU5mnBvibnx8WhCHzyww28kNYa89vBRDzRPgTVy5rQs3kwNu1PzPfnVejSNgJU/l0EUaKVcyPAoDpaV0XkdTgzJysGEy8iVAeQUvSCiaIKrN+XgKPnLZkuLxdqRJCvDjfisl9hMSbRgR93xeFWQubr61QwAwCux2Xf0rJiRxzMRgldmwQiLkmBogJBad1Mgb5yluN5LgFxfgXUvyc4NwJ8+G9uBEiUzzgzJysGE68iQViuaV1EodPJEqb9cB0f/3A90+VHzqciLllBWDlTtvez2AXGL7iClXe0qOw46ly4LaycOct9ki0qPl1zA6N7lYQkSQjx10GWgJtpYeRGgsOzZ+hkQ8QdzrwRYLuftC6JyGtwZk5W3nUGLeIkWQekFr1gAgAjuodi/IIreOebK3ioUSAu3LBh9pqbqFHWhN4tgwEANruKoxesKBWiR+kQA8oWM6BPyyB8tvYm9LKE2hXN+PNkCr7YcAuPtgpC9bJZA83Xm2+hWhkTWtf1BwDodRJa1fHD5+tuYmBUCFbuiMPA6GKF+dQLR9pGgHKVAZAqPQrR6xKkjS2AlPNaV0bk0TgzJysGEy8jLHdf6dRb9WweDLNBxvwNt7B6Vzx8TTI6NAzAS71Kwmx0NgzeiHeg/4dnMaJbKJ5/xDk+5K3+ZVA+1Ijvt8fhcowdpUP0GPlICQzplDVc3EpwYMHmGMx/KfPOvBP6l8HYry5h7JeX8VCjQPRv74XBBHBuBHh6EUT8Mch1RkM8cgLSriHAuW+1rozIY3Hwa1aS4Kgbr+LYPhiwJ2hdBnk7c0nowscB/pUgnVkC7BpcsI/X8ywcprKwJCcV7OMQacA/KCT3GxUhHGPiRYRiZSihwmG5DuWvMRCXNwJVB0E8cgoweuay/ERaY/tAZgwm3oShhAqTaod64nMoRz4GfCtA9DoHlOmidVVEHkcIdudkxGDiTRhMSAPi2lYo+14GbHEQ7dcAjT/RuiQij8JxJpkxmHgJIQSEzcNXHCXPlXIRyr6XIa7vAGqOcq55ovfXuioij6Cqgt05GTCYeAuhADa2mJCGFAvUIx9DOf45EFQXovdloHgLrasicnvsysmMwcRrCHblkFsQl9dD+et1QLFCdNoKhL+ldUlEbo2tJZkxmHgNGcIer3URRE6Jp6DsfQki9gBQ/x2g4zZANmhdFZFb4hiTzBhMvIQk6wC7F2weR97DkQT14LtQ/l0IUaJl2kaAdbWuisjtCCG4LH0GDCbehF055HYExPmVzo0AJT3Ew/uBGiO1LorIrXCMSWYMJl5E2NiVQ+5JxB2GsncUkHASoskMoN0arUsichtC5RiTjBhMvIkjResKiHJmi4Xy95sQ51cA5bo5Z+34VtK6KiI3wGCSEYOJN1HtWldAdHdChXp6MZSD7wKGIIhHjgOV+mtdFZGmOCsnMwYTbyIYTMgziFv7oOx9CUi5BNFyEdBikdYlEZGbYDDxJmwxIU9iuQ7lzzEQlzYAVQZCPPIvNwKkIoutJrcxmHgTBhPyNMIB9eQcKP98DPiWh+h1HijzsNZVEZGGGEy8iXBoXQHRfRHX0zcCjIFo/xPQeLrWJREVMraYpGMw8SYqgwl5sJSLUPa9AnFtB1DzRYiHD3AjQCo6mEtcGEy8hFAV8J1NHk+xQD36MZTjnwFBdZxTikNbaV0VUYHj2fs2BhNvwW4c8iLi8gYof411bgTYcQtgKqF1SURUSBhMvAWDCXkbWwLUy+sBoQB6X62rISpgbDNJp9e6AMov3ACKPJUMhIRDKtYIcmANwKcsYAiAJDtPT0IICCGg2DnrjLwYc4kLg4m3kPijJA9gDAaKR0IOCYfkXxkwhQI6MyTJ2XgrHBao1hiI5EuQA6pA0vtCqCosqclQFUXT0omocPDbzFvIOq0rIMosqDakYo0gBdWE5FMOMAZCkg0AnLupClsCRPIVZxCxxEK1xgCKBbJvWRjKRQGyHnabFTZLqsZPhKgQSGz1Tsdg4iUkSQdndw7bA6mQ6f2B0KaQg+tBCqjqHKiq97ndCqLYoFpiIOJOQFhjnf+2xQHZbPVuKBcF2b8ihFBhSU5kKwkVGcwltzGYeBNZz9VfqWD5V4NUvAmkoFqAbzlIxmBANkCSJOdYEHsiROp1Z/iwxkC1xuZp12vJpxSM5TtA0hlhs1rYSkJFEJNJOgYTbyLpATCYUD6QzUBoE8ghDZytIOaSgN43rWUOEKodwhILJeFfCEuMszvGGuecQXOPDGXaQg6s4mwlSUqEonCGGRU9EptMXBhMvImsB9jyTffKtwKk0EhIQbUg+VV0DlCVja4TpbAnQbXcgmo5BWGNgbDGQtiTHvhhJXMJGMp3hKw3wW61wmrJvWWFiLwfg4k3kQxaV0DuTDYCxSKcrSCB1QFzaUDvB0lObwVxQFjjoCacTeuGcYaQgtjqQF+6NXRB1SCEQGpyIhQHW0moCGNrSSYMJt5E5o+T0phLO1tBgus4W0FMxQDZlKEVJBmq5RZEwpm0WTExEPbEgq/LVBzGCp0g682w26ywprKVhIixJDN+k3kT2aR1BVTo9ECx+pCLNYQUGAb4lAb0/rcXJ1MVCFsc1MTzzlYQS2xaK4it8Cst1QK64DC2khDdiS0mmTCYeBNDgNYVUEEyFgdCm0EOqQvJrxJgKg7oTBkWJ0t1toIknk8LIDEQtgRoPoXcGAJjxYcg633SWklSta+JyI1IbDPJhMHEi0iGAJ7uvYIMBNWBVLwR5MAwwDd9ifaMi5PFQyRfSpuWm744mVXjurPSl2oGXXAtQAikJidBcXDWGFEWzCWZMJh4CSEEW0w8kT4QKBEJOTgckn8VwFwi8xLtitXZCpJ02TUYVVjjAWRdnMytGINgrNAZssEXdpvNOeNGMDYTZYctJpkxmHgLoQCGQK2roLsJrAmpeGNIgbUg+ZYFDEGArE9bnEyFsCWmLdEe6xoPAsXzFhrTlWgCfbG6bCUhyiNJZjDJiMHEawhIhkB25bgDvR9QvAnkkPqQ/Ks6W0H0vpmXaLfGQMSfTAsgMRC2+PtanMyt6ANgrNgZstEfDrsN1tQUZ0seEd2VJMkQQnCRtTQMJl5DYouJFvyrQCreNG1xsvKAIfiOJdqTIFJvOFtB0lZIzcsS7Z5GFxoBffH6AABLShIcdraSEOWVJMtal+BWGEy8haTjGJOCJJuBYo0gF2sAKaAa4FMK0PlmWJzMuUS7mvCva6dc5xLtXj4lVu8HY8UukI0BbCUhuk/prankxGDiJSRJAowhWpfhHXzLO1tBgutA8qvgfF1zXKI9bVpuPizR7ml0xRtAH9oAgARLSjIc9sJfG4XIG8iyxG6cDBhMvIkxSOsKPIusB0IiIBeLSGsFSV+cLKcl2tMXJyvi3RR6X+eMG1MQHHY7rKnJbCUhegDsysmMwcSbMJjkzFwCUmjztFaQSlmXaHekpC3RfjZtifbYtCXa+YWbka5YOPQlGoGtJET5h105mTGYeBFJNjp3hrXFaV2KhvRASDikYhGQA2sAPmUBQ4Yl2oUCYY2HmnjBtVOuaonRZIl2jyKbYajUGTpTCBwOO6wpKRDCzddSIfII7Ma5E4OJtzGXKjrBxFgMCI2EHFwXkn9lwBR6xxLtlrTFyS64VkgVtniwFeTe6ELqQF+yCQAJltQUOGzut8IskafiGiZZMZh4GclcCiLhuNZl5L+gumlLtNfMYYn2BOcS7Rmn5brhEu0eRTY597gxF4fisMPCVhKifCdzfEkWDCZeRKgOwKek1mU8GH0gENoEcnB9SAFVAHMooPO5Y4n2GIjky7c3qvOEJdo9jBxcE4aSkYAkw5qaAjtbSYgKBMeXZMVg4mUkc2nP6agIqOFcoj2oFuBbDpIh6I7FyRIhUq65AohzcTLPW6Ldo8hGGCs8BMlcHKqiwJKaAKEy9BEVFEnmqq93YjDxIpKsh/AprXUZWel8by/RHlAVMJcE9D6QpLRpuYodwhoDJf5Uhmm5cZ6/RLuHkQOrw1C6BSDJsFlS2UpCVAjYlZMVg4mXkXzLaFuAXyVIoWlLtPtWdM4SyrJE+820lVHTNqpzJGtbc1En69NaSUqwlYSokMk6HVtL7sBg4m2MIc7l6Qu6tUE23bFEe+k7lmh3OKfiJpx2BRBhjfX+Jdo9jBxQFYYyrZytJFYL7FaL1iURFSly2jmTbmMw8TKSJDt3s029mn8H9SkDKbQZpODazlYQU7E7lmhPdk7Ltf57e1quPTH/Hp8KgB7Gih0h+ZSCqiqwJidCVdl1RlSYJElma0k2GEy8kORXEeJ+gomsB4IbOJdoD6wO+JQB9H63FydTFQhbLNTEc64puVyi3fPIAZVgKNMGkHSwWy2wsZWESBOyjq0l2WEw8TJCKIBfReDmnrvf0FTi9uJk6Uu0Z1qcLMXZ+pFwNm0wagyEjUu0ezYZhgodIfuWgaqqbCUh0pis44yc7DCYeCHJr1KG+CCnLdHeCHJgmLMVxBCQYYl21blRXdJF1065qiUWUDkjw5vIfhVgKNeOrSREboTjS7InCW4L6nWEPRmw3Upbot2ceYl2awyE5ZZrhVQu0e7tZBjKR0P2KwehqrCkJkNV2EpC5A58/AOg07F94E58RbyQZPCDqjogkq+4dsp1LtHO35KLEtmvLAxlowBZD7vNCpuFi9MRuRO2mGSPwcRL2S9vhbDe0roM0oQEQ7n2kP0rOltJkhPZSkLkZiSZM3JywmDihYQQkM3FoBTBYHLw+CVMX7gFh09ega/ZgFaNqmL0U9EoHuyX7e3PX4nBI8PnZLm8WsVQrJz5LADg+q1EvDV9DQ4ev4xaVUth0gtdUalsMddtj52+huGTlmLN58Ph72sqmCeWR5JPaRjLR0PSGWGzWthKQuSm2FqSMwYTbyRUSObiQPxJrSspVEdOXcEzb36DZg0qY9q4PrgRk4QZi7bg/P9WYOGHg7O9z/HT1wEAc//7BHxMBtfl5gz//vCLzUix2PDxuD74ds0+vPnJT1j04ZOu6z/5+jc8/WgLzUOJoWw7yAGVIYSK1KREqAoXsyNyV7JOxxk5OWAw8UKSrINsDtW6jEI37evfUKtKKUwf3xey7Pyw+/ma8OG8Tbh4LQ7lSwVnuc/xM9dQqngAmtWvnONxdx04i0kjH0aLhlUQHOiDfqO/QkqqDb4+Ruz6+wzOXrqFGW/2LaBnlTvJpyQM5TpA1pvYSkLkITjoNWd8ZbyUZC5WOEvTu4m4hBTsO3we/x3V3RVKAKBji5ro2KJmjvc7duYaalYtdddjSxJgMjo/Kga9s/lVUVUIITDt698won8bGA3afJT0pdtAF1QVQgikJiVCYSsJkUfQ6fVsLckBg4mXkiQZkrk4ROp1rUspFCfO3oCqCoQE+mLc1B+xZc8pCAh0aF4TY5/thEB/c7b3O37mOiqWCcHgMQtx9PRVBPiZ0SO6Hp4f0NYVQhrULIe1v/+DBrXKY/Uvh1CjUgkE+JmxdsthOBQV3dvXK8yn6mQuDmP5TpD1ZthtVlhTUwq/BiK6L7LMjfvuhsHESwmhQvYpBaWIBJPYBOcX88SZa9G6UTV8Mv5RnLscgxmLfsfFa3FY8P7ALCeC2IQUXL+VCEVRMfrJKJQpGYTdB87iq5W7cO1mAt5/pScAYMyzHfHKB6vQZsA0VCwbgg9f6wW7XcGsJVvx+rBOuHgtFu99tgE3YpPQu2MDDOoZWaDPVV+6JXRBNZytJMmJUBxsJSHyJDq9nuNL7oLBxIvJvqWgxBzSuoxCYXc4u6zqVCuNSS90BQA0a1AZAX5mvD71R/zx9xm0jKia6T4+JgM+f7sfKpYJQbm08SdNwivCaNBh1pKtePaxVqhaIRQVyxTD99OfRorFBl+zEQCw8Mc9KB0aiHZNa+Dx0V+iRcMqGNWqFkb+93tULBuCdk1r5P+TNIXAWOEhyHqftFaSVHBxPCLPI3N8yV3JWhdABUOSZMi+pQAUjUTu5+MMDG2bVs90eatGzjBy7PS1LPcxmwxo0bCKK5Ska9PEeYzjZzK3NqWHkoQkC+Z/vxOjBrfHxauxOHb6Ggb1jESd6mXQoUUYNu88ni/PKSN9qeYwVe4ByCakJieldd0wlBB5Io4vuTsGEy8myQZIpmCtyygUFcs41xWx2TMP9nUoKoDbg1czOnc5Bt+v34+EpMwr4lptzt2SiwX5ZvtYX674AxF1yqNh7fKIiXd2IQUF+AAAAv18cCsu+QGeyR2MQTBWewz6kFpw2G1ISUqA4uBuzkSeSpJkyDK/eu+Gr44XE0JA9rn7jBNvUbVCcZQtGYQN244g4/ZPW/Y413JpVLdClvvcjE3Cu5+tx6adxzJdvmH7Ufj7mlC7Wuks97l2MwHL1v2FFwa2B3A7vNyKTQIA3IhNyjHQ3Ct9yaYwVekFSWe+3UrCra2IPJpOz26c3PAV8mrCOc4k7ljuN/VwkiTh5aei8dqUVRgz5Uc8+lAD/HvhJmYt3oqOLWqidtXSSEqx4vSFmyhfOgTFgnwRUbsCmtWvjKlf/gKL1Y5qFUKxbd+/+GbNPrw6tEO2M3lmLdmKh1rXQrWKznViypUKRtUKoZi+aAuim9fEr7uOY9IL3R7syRgCYKzQGbLRHw67DRYGErpPhw4dxsxPP8U//xyBr68PWjRvgZdeHIlixZwtjEOfHYYDBw5mud+iBV+hTp3a931cu8OBKVOmYuPmzSgWEoJXXn4JrVq2dN3fYrGgT9/H8L/3/ouGDRrk87N2bxz4mjvuLuzlhMMC66mlWpdRaH7fexJzlu3AybPXEeTvg67t6mLkwLYwGvTYe+gcnnnzG7zzYjf07FAfAJCUYsXnS7fjlz+O42ZsEsqXDsGgHk3R56GGWY598ux1DByzED/OHobSJQJdlx87fQ1vTV+Da7cS0LdzBF4Y2O6+Tzq60EbQF68HQMCamgKHnd02dH+OHj2Gp4c9h8imTfD4Y4/hxs0bmDX7M5QrWxZfzZ8HIQTaRXdAr5490alDh0z3rV69Gnx8fO7ruADw3ffLMfeL+Xhj3Os4evQoln73HX5cuQIhISEAgC8XfI3Dhw/j44+mFOyL4IZ8/QMh67gc/d0wmBQB1tOrIGzxWpdBd6P3h7FiZ8jGADjsNlhTU8CPJj2I4SNGwmq1Yv68Oa4xDb/+9hs+mjoN8+Z8DlVV0OvR/+CzWTMRGdk0345brlxZvPLaWJQqWQJjXnsVQgi079AJ777zNtq0boW4uHj06fsfzJvzOapVq5rLo3kZSYJ/YLDWVbg9jjHxckIIyP7ltS6D7kJXvAFM1fpAMvjDkpIMS0oyQwk9kLi4ePz511/4T98+mQZaRkdFYd2a1ShXriyOn3COvwoLC8vX4wJpqyWbTGn/lqDX66GqzoHpX3z5Jdq2bVP0QgkAPceX5AmDSREg+2Ud+EluQO8LY5XeMJSIgOJQkJIYD4fdpnVV5AVOnjoFVVURHByCN96agDbto9G6XRQmTHwbiYmJAIATJ07A19cXn8yYgehOndGidVu8+NJonD137oGOCwD169XDth07cP36dfy25XekpqaiTu3auHTpMlb/tAbDnxtW4K+BO9LpjfylIw8YTLycJEmQfUsCsiH3G1Oh0RWrB1O1vpCMgWmtJEk8YVG+iY2NBQC88+57MJlMmPrhZLz04gvYun07Rr38CoQQOH7iJFJSUhAYEICpH07GW2+Mw/kLF/DMsOG4cePGfR8XAB77T19UrlQJ3Xr0wtv/fRdvjn8dJUqUwOzPPkfvXj0RFBSEiW+/4xwA+/5kpFos2T6et9EbDBz0mgdsVyoCJEmG7FcWamLOvwlRIdGZYajYBTpTMBx2O6yp7Lah/OdIW+umdq2amPDmGwCAyMimCAgIwPg338Ku3Xvw/P8Nx5ODBqJRowgAQAQaon79+uj7WD98u3QZXnxh5H0dt0XzZjCbzfjow8mwWCwwmUyQJAlHjx7DH7t24YcV3+Ozzz7H9evXMfWjD/HB5Cn4fM5cjB71YmG8NJrR6bioWl6xxaQIEEKF7MdxJlrThdSBqfpjkI1BsKSylYQKjq+vHwCgTevWmS5v2aI5AOD48eMIC6vhCiXpypcrhyqVK+PEyVP3fdyMzGaz68t4+sxZGDRwAIKCgrD519/Qu1cvVKlcGY/26Y1ff/3tfp6mR9EZDPy85xGDSREgSTJ0/hxnohnZBEPlHjCUioSqKEhJTIDDxrEkVHAqVnB+3m13vM8caRs+mswm/LRmLQ4ezLqXltVqRUhI8H0fNzs7//gDZ86exRP9Hgfg7BIKCnJOuQ8MDMCtmJi8PC2PpjcY2WKSRwwmRYSkN0MyFde6jCJHDq4JU/XHIZtCYE1NQWpyEoRQtS6LvFyVKpVRtkwZbNy0KdNv6b9v3QYAiGjYEPO+mI9PZs7MdL+jx47hwsWLaNK48X0f906qqmLGzNkY9szT8DE7Fy0MCQnBrVu3AAA3b95yrW/irWSZy9DfC75SRYQQKqcNFybZCGPl7jCUag5VVZGSlAC7zap1VVRESJKEUS++gIOHDmPcG29i9549+HbZMkyd9gk6REehVs2aGPbsMzhw4CAmTHwbu3bvxqoffsRLL7+KsLAa6N7NuUO3zWbDoUOHce3a9Twf905r1/0Mm82Gnj0ecV3WpnUrLP7mW+z84w98s3Qp2rVtUzgvjEZ0Bs7GuRdcYK2IEEJAWGNhO7ta61K8nhxUA4ZSzQFJhs2SykBCmtm6bTu+mP8lTp46hcDAQDzcpTNGDH8ORqNzp+yNmzZj4aLFOHP2LHx8fBDVvh1Gjvg/BAUFAQAuX76MR3r1wbBnnsZzw57N83HTWa1W9O77GF5+aRQ6doh2XR4fH48Jk97B/r//RmTTJpg44S0E+PsXwiuiDR+/AMg6Hbty8ojBpIixnl4JYUvQugzvJBtgrNAJkrkEVEWBJTUZQmW3DVFRJkkS/Lja6z3hdOEiRAgVusCqcNz8W+tSvI4cWBWG0q2crSTWVNitbCUhIkCnN3DTvnvEYFKkSJADqwEMJvlID2PFTpB8SkJVFViTE6CylYSI0ugNxtxvRJkwmBQhkiRBMgZAMhWHsN7SuhyPJwdUhqFMa0DSwWa1wG4tGqtXElHeSJIEnZ4Lq90rBpMixtmdUwWOGwwm90+GoUJHyL5loKoqrMmJrg3KiIjSsbXk/jCYFDGSJEMXVA2OG/u0LsUjyX4VYCjXDpB0sFstsLGVhIhyYDBmv+Ac3R2DSREk6X0g+ZSCSL2mdSkeRIahfDRkv3IQqgpLSiJUha0kRJQ9WaeDrNNpXYZHYjApglyzcxhM8kT2KwdD2faArIfdaoXNmqp1SUTk5gwGE2fj3Ceu/FoESZIMXWBVQGKavzsZhnLRMJTvCAEZqcmJDCVElCd6I/fGuV9sMSmiJJ0BckAlqAmntS7FLcm+ZWAoFwXIBthtVtgsDCRElDd6g4Gh5AEwmBRRQqjQB9eCjcEkC0PZdpADKkMIFZbkJKiKQ+uSiMiD6NmN80AYTIooSZIh+ZaEZAyCsMVrXY5bkHxKwlC+A2SdCTarha0kRHTPuHbJg+MYkyJMCBW64DCty3ALhjJtYKz4MCAZkJqUyFBCRPdFzynCD8yrg0lSUhIaNGiAli1bwm635+ux7XY7FixY8MDHiY6OxsyZMwEAK1euRM1stg0vKM41TcKK9iBYc3EYq/dzru1isyElMR4Ku26I6D4ZjFxU7UF5dTBZu3YtihcvjsTERGzatClfj71mzRq8//77+XrMrl27Yvv27fl6zFzJeucMnSJIX7oVTJW6A7IRqcmJsFpStC6JiDyYTm+ALOvYjfOAvDqYrFixAm3atEHz5s2xdOnSfD22ECJfjwcAZrMZJUqUyPfj5kYXUqfQH1NTphAYqz8OfXANOOw2pCQmQHGwlYSIHozRZC6Q74aixmuDyb///osDBw6gVatWeOihh7B7926cOXPGdX3GLpTsLlMUBVOmTEG7du0QHh6OLl264NtvvwXg7HIZN24cAKBmzZrYvXs3Zs6ciYEDB2L06NFo1KgR/vvf/wIAvv/+ezzyyCOoX78+GjZsiP79++PQoUPZ1nxnV86JEyfw3HPPoWnTpggPD0eHDh3w5Zdf5t+LBOdALdkcAsmn8AORFvSlmsNUuQcgm5CanARragoAnkiI6MHIOh0HveYTrw0my5cvh6+vL9q2bYtOnTrBYDDcU6vJN998g/Xr12PatGnYsGEDBg4ciEmTJmHfvn3o2rUrxo8fDwDYvn07IiIiAAB79+5FaGgofvzxRwwaNAibNm3CO++8g2eeeQY///wzFixYAKvVijfffDPXx09NTcXQoUMRHByMpUuXYs2aNejSpQsmT56Mo0eP3t+LkgMhVOiLhefrMd2OMQjGao9BH1LL2UqSlADFkb/jjoio6GJrSf7xymDicDiwevVqREdHw2w2Izg4GK1bt8YPP/wAq9Wap2OcP38evr6+KF++PMqVK4eBAwfiq6++QpUqVWA2mxEQEAAAKFGiBIwZBju9+OKLqFChAipXrozg4GC899576NmzJ8qVK4eGDRuib9++OHHiRK6Pn5qaisGDB2PChAmoVq0aKleujBdffBEAcPz48ft4VXImSTJk/4qQjEH5elx3oS/ZFKYqvSDpzLdbSXgCIaJ8IskydHouqpZfvHIdk99//x03b95Et27dXJd169YNv/32G37++Wf06tUr12MMGDAAmzdvRrt27VC7dm20atUK3bp1Q/HixXO8T/HixV2BBQCaNm2Kf//9F7Nnz8bp06dx7tw5HD9+HKqq5vr4xYoVQ//+/bFmzRocOXIE58+fx7FjxwAgT/e/dwK6YnXhuLqzAI6tEWMgjOU7Qzb6wW6zOQe3MpAQUT7jLsL5yytbTFauXAkAGDlyJOrUqYM6depg7NixAHDX7hxHhgGQlStXxsaNG/HFF1+gefPm2LJlC3r16oVVq1bleH+z2Zzp/z/99BN69OiBCxcuoFGjRhg7dixef/31PD2HGzduoEePHvj+++9RqlQp9O/f/66P/aCcU4erA3rfAnuMwqQLbQxTld6Q9D6wpCTBmprMUEJE+U+SYDCa2FqSj7yuxeTWrVv4/fff0adPHwwZMiTTdQsWLMCKFStw4sQJGAwGJCUlua5LSkrCrVu3XP9fuHAhihcvjm7duqFVq1YYM2YMhgwZgnXr1qF37955ehPOnTsXffv2xdtvv+267JdffgGAXJcrXrNmDeLi4rBhwwYYDAYAt7twCrIfU1+sDhzX9xXY8Quc3h/Gip0hGwPgsNtgTU1hvy8RFRi2luQ/rwsmq1evhsPhwLPPPouqVTOvzzF8+HCsWrUKS5cuRcOGDbFu3Tp07twZgYGBmDFjBnS62wuNxcTEYPbs2TCbzahVqxZOnz6No0ePYvDgwQAAX19ny8Lhw4dRvXr1bGspU6YM/vrrL/zzzz8ICAjAr7/+isWLFwMAbDYbTKac39ClS5dGamoq1q9fj8aNG+P06dOudVNsNtv9v0B3IUkydMG14Lh5EFAL5jEKkq54Q+hDGwAALCnJcNg97zkQkWcxMpjkO68LJitXrkTLli2zhBIAqFixIjp27IjVq1dj7dq1iIuLw5AhQxAQEIChQ4ciISHBdduRI0fCbrfj3XffxY0bN1CiRAk88cQTeO655wAAzZs3R4MGDdCvXz9MmTIl21reeustTJgwAQMHDoTRaEStWrXw4YcfYvTo0Th06BCaNGmS4/Po0qUL/vnnH3zwwQdISkpCuXLl8J///Ae//PILDh06hCeeeOIBX6kcSDroQmpBuXWwYI5fEPR+aa0kgXDY7bCmJrOVhIgKnN5ghCR75YgITUmCZ3C6g1CssJ76HhDuv+iYrnh96EMbApBgTU1hKwkRFRpf/0BIsszxJfnM61pMKB/IRuiCw6DEHtG6kpzpfWCs0BmyKZitJERU6PQGI2RdEd5nrAAxmFC29KENoMSfAFT3azXRhdSFvmRjABLHkhCRJoxmn1wnMdD9YTChLCRJgpCN0IXUhXLrgNbl3CabYaj4EHTmYnA47LCmpECIgljThYgoZ3qjEZIkMZQUEAYTypYkSdAXrwcl7jigWLQuB3JwLRhKRSJ9LIndlrcVfImI8pvR5KN1CV6NwYRyJsnQF68Px/U92tUgG2Gs2BmSqRhUxQFLagpEgax8S0SUu/TF1NhaUnAYTChHkiQ7pw7HHoGwJ+V+h3wmB9WAoVRzQJJhs6SylYSINCbBaGZrSUHjBGzKlXM6biGSDTBW6gZD6ZZQVYGUpASGEiLSnDFt2xG2lhQstpjQXUmSDDmwGqSYwxDWuAJ/PDmwKgylW7GVhIjcilQAe+IMGjQIe/Zk7io3GAwIDQ1FdHQ0XnvtNfj4PHgLjd1ux5IlS/DUU0898LEKA4MJ5YGAvkRj2C/+UnAPIethLN8Jkk9JqKoCa3JCAe2iTER07wqqC+fhhx/GG2+84fp/SkoKtm/fjvfffx+qqmLSpEkP/Bhr1qzB+++/z2BC3kOSZOj8K0DxKwc1+VK+H18OqAxDmdaApIPNaoHdqv0sICKidLKscy4/XwBdOGazGSVKlMh0WaVKlXD48GGsW7cuX4KJpy0+yTEmlCdCqNCnDUTNPzIMFTrDULYdVCEhNSmRoYSI3I7Jx7fwH9Nkgl7vbDuw2WyYMmUK2rRpg4iICDz22GPYvn2767aKomDKlClo164dwsPD0aVLF3z77bcAnPvHjRs3DgBQs2ZN7N69u9Cfy71iiwnliSTJgMEfumLh+bLBn+xfEYaybQFJB7vVAhsDCRG5Ib3BCJ2+8L4qHQ4Htm/fjh9//BH9+vUDAIwbNw7//vsvPvroI5QqVQq//fYbhg8fjlmzZqF9+/b45ptvsH79ekybNs11/aRJk1CjRg107doViYmJ+N///oft27cjKCio0J7L/WIwoTxzLrrWAGrC6QeYPizDUL4DZL+yEKoKS3IiVFXJ1zqJiPKDJEkw+fgW6NLzP/30EzZs2OD6v8ViQdmyZfH0009j+PDhOHfuHNasWYMffvgBtWvXBgAMGTIEx44dw/z589G+fXucP38evr6+KF++PEqWLImBAweiatWqqFKlCsxmMwICAgAgS5eRu2IwoXsjSdCXjIT90q/3fFfZrzwMZdsBsp6tJETk9tIHvBbk9ODo6Gi8+uqrEELg4MGDeO+999CyZUsMHz4cer0eR444N1Pt379/pvvZ7XYEBgYCAAYMGIDNmzejXbt2qF27Nlq1aoVu3bqhePHiBVZ3QWIwoXsiSTJ0ARXvcSCsDEO5KMj+5W+3kihsJSEi96XT6WEwmgr8cfz8/FCpUiUAQOXKlVGyZEkMGTIEOp0OkyZNcg1cXbJkCfz8/DLdV5Zl1/02btyIPXv2YMeOHdiyZQvmzZuH999/H7179y7w55DfOPiV7plzIGwLQMp9y2/ZtwxMNZ6A7F8edpsVKUkJDCVE5PbSu3AKW/PmzTFkyBB8++232Lp1K2rUqAEAuHHjBipVquT6s3LlSqxcuRIAsHDhQmzcuBGtWrXCmDFj8NNPP6FFixZYt24dAM9bEI7BhO6ZJMmQDH7QFQu/6+0MZdvDUOEhCElGanIibJbUQqqQiOj+GUxmSLKs2Rf6qFGjULlyZUyaNAlly5ZFVFQUJk6ciF9//RUXLlzAvHnzMGfOHFSsWBEAEBMTg3feeQe//PILLl26hG3btuHo0aOIiIgAAPj6OmcVHT58GBaL+3ehS8LTJjiT2xBCge3MaghbfKbLJZ9SMJbvAElnhM1qYSAhIo8hyTJ8/QMLJZQMGjQI5cqVwwcffJDluj179mDw4MEYOHAgXnnlFUybNg3r1q1DfHw8KlasiKFDh+LRRx8F4JzJk379jRs3UKJECfTq1QsjR46ETqdDfHw8nn32WRw5cgRTpkzBww8/XODP7UEwmNB9E0KFsNyC7dw6AM63kaFMW8iBVSCECmtKChTFoW2RRET3wOzrD51e73HdH96Eg1/pvkmSDJhDoQupDSX1OozlO0HWm2C3WmG1pGhdHhHRPdEbDNAbDFqXUeSxxYQemFAVQJIhhIA1NRmKg60kRORZJEmCb0AgAImtJRpjiwk9OEkCIJCSlAAw5xKRBzL5+IGhxD1wVg49MEmSAUiFMuefiCi/GYwm6A0GhhI3wWBC+UKSJBhNZshy7mubEBG5C1nWuVZ4JffAYEL5yuzrl/uNiIjcBM9Z7ofBhPKNJEmQZJm/fRCRRzCafTRdSI2yx2BC+Sq9S0en55Q7InJfOr0BRpOZocQNMZhQvhNCwOzrlzYolojIvUiSBLNGe+FQ7vjNQfku/TcQsx/7bonI/Zh8/ACJU4PdFYMJFQhJkiDLOph8fLUuhYjIhVOD3R+DCRUYSZLSTgJGrUshIoJOp+fgfA/AYEIFSggBk48v1zchIk1JkszuZQ/BYEIFKvN4EzadEpE2fPz8wSXnPQODCRU4SZKcv634crwJERU+s68f1yvxIAwmVCgkSYLeYITBZNa6FCIqQgwmM/QGI0OJB2EwoULFxdeIqLDo9AaYONjV4zCYUKEz+/pB1nEwLBEVHFmWYfb14yJqHojBhApVenOqj68/V4YlooIhSTD7+af9k104nobfDFToJEkCJMk5Sp4nDSLKZ2Yf55YYDCWeicGENJG+E7GPr7/WpRCRFzH5+EKn1zOUeDAGE9KMJEmQdTqYfbnoERE9OKPZhzNwvACDCWlKkiTn9uMcOU9ED8BoMsNoMjOUeAEGE9KcJEkwmswwGE1al0JEHshgNPGXGy/CYEJuw9k3zDVOiCjv9AYjdzH3Mgwm5DaEEDD7+kGn12tdChF5AJ1eD5OPL9cq8TIMJuQ2XBv++foznBDRXck6Pcy+XKvEGzGYkFthOCGi3MiyLm23YIYSb8RgQm6H4YSIciLLMkOJl2MwIbeUOZxwQCwRAbJOBx//AECSGEq8GIMJua3b4cSP4YSoiJN1Ovj4BQBgKPF2DCbk1hhOiEin16eFEnbfFAUMJuT2GE6Iii6d3sDZN0UMgwl5BIYToqJHbzC49tJiKCk6JMGVaciDpL9dbZZU2G1WjashooKScUVXhpKihcGEPJbNaoHNkqp1GUSUzwxGk2tFV4aSoofBhDyWEAKKww5LSrLWpRBRPjGazNyQr4hjMCGPJoSAqihITUkC+FYm8mgmHz8YjEatyyCNMZiQxxNCQKgqUlOSIFRV63KI6B5JkgSznz9kWceuG2IwIe8ghACEQGpKElRF0bocIsojWdbB7OcPiau5UhoGE/Ia6W9lS0oyFIdd42qIKDfONUo4HZgyYzAhr8LpxESewWAyw2T24cwbyoLBhLyWw26DJSUFAN/iRO7E5OMLg9GkdRnkphhMyGsJISCECktyMlSV406ItCZJEsy+/pB1HORKOWMwIa+W/va2pqbAYbdpXA1R0aXT6WHy9eMgV8oVgwl5vfQ+bLvNCmtqitblEBU5RpMZBpMZAAe5Uu4YTKjIEEJAVRVYkpMhBNc7ISpo7Lqh+8FgQkUKpxQTFQ5OBab7xWBCRU561w43ASQqGCazDwwmM6cC031hMKEiK30pe0tqMleLJcoHkizDx9cfkiwzkNB9YzChIi397W+3WmCzWjSuhshz6Q1GmHx8AbDrhh4MgwkRMrSepHDNE6J7IUkSTD6+0BuM7LqhfMFgQpTGtZy91QI7W0+IcsVWEioIDCZEd0ifVmxNSWHrCVE2JEmGydcXer2BrSSU7xhMiLLB1hOi7BmMJhjNPgDYSkIFg8GE6C7Sx55YU1OgKA6tyyHSjKzTweTjC1nmYmlUsBhMiHJxe0l7G2yWVK4aS0WO0ezj2g2YoYQKGoMJUR5xajEVNXqDESazD8CN96gQMZgQ3SMhBIQQsFlS4LBzWXvyPjqdHkYfH+h0eg5upULHYEJ0H9JP1orDDmtqKmfvkFeQZR2MZh/oDZxtQ9phMCF6AOkfH4fNCqvVAvDjRB5IkqS0QGJ0/Z9IKwwmRPmA04vJUxlNZhhMZgAMJOQeGEyI8pHz4yRgs1hgt1m1LocoRwajCUaTmQNbye0wmBAVACEEIISzBYUBhdyI3mCE0WSGJMsA2EpC7ofBhKiAuD5aDCjkBgxGEwwmsyuIMJCQu2IwISpgtz9iAjarFXarFQA/dlTwJElyBZKMlxG5MwYTokLkWqTN5gwoXEWWCoIkyTCaTNBztVbyQAwmRBpI/9gpDjvsNisUB/fhoQcnyzoYTGboDQYADCTkmRhMiDSUvoiVqijOVhSOQ6H7oDcYoDeaoNdzYTTyfAwmRG4g48fQYbPBbrNAVdnNQzmTZNk5fsRohCTJDCTkNRhMiNxMxuXubVYrFAf346Hb9AYjDEYTdHruY0PeicGEyE2lf+kIocJhs8Nut0FVOBalKJJ1OhgMJuiNRtdlDCTkrRhMiDyAayyKqsJht8Fht0FVuHGgN5MkCXqDEXqjCTqdjq0jVGQwmBB5mIwDZh12G+x2GwTHo3gFSZadYcRggE6nd409YiChooTBhMhDZfzSUhQFDrsVDrudIcXDyLLOOavGYISc1jICMIxQ0cVgQuQFMn6ZqaoCh90OxeHgwFk3Jev0t8OILDOMEGXAYELkhW4PnBVQFQccDgcUux2qynEpWpBkGTq9s3tGb9Bzei/RXTCYEHm5jL+NC6HCYXe2pCgOO/jxLxiZgoheD4mtIkR5xmBCVMRk/E1dVVUoDgdUxQFFUTgd+T4xiBDlHwYToiIuc4uKgFBVKBmCCqclZybrdJBlHWSdDjqdDrJO73rtAAYRogfFYEJEWdwZVlRVgepQnH+rKkTa395MkiTIOr0riOj0OkiSnCmEpN+OiPIPgwkR5Ul2LQKqqkJVFQhVhap4VmiRJAmSLEOSZMiyDEnO+LfO9TzZEkJUuBhMiOiBZfflLYQKoQpn95BQ0/52dhW5/p3hcjzgqUiSJECSnIEDGf6d/idj+Ehr+biz/jufAxEVPgYTIipwd55m8vLln/OpSQACQNoxcjsWQweRZ2EwISIiIrcha10AERERUToGEyIiInIbDCZERETkNhhMiIiIyG0wmBAREZHbYDAhIiIit8FgQkRERG6DwYSIiIjcBoMJERERuQ0GEyIiInIbDCZERETkNhhMiIiIyG0wmBAREZHbYDAhIiIit8FgQkRERG6DwYSIiIjcBoMJERERuQ0GEyIiInIbDCZERETkNhhMiIiIyG0wmBAREZHbYDAhIiIit8FgQkRERG6DwYSIiIjcBoMJERERuQ0GEyIiInIbDCZERETkNhhMiIiIyG0wmBAREZHbYDAhIiIit8FgQkRERG6DwYSIiIjcBoMJERERuQ0GEyIiInIbDCZERETkNhhMiIiIyG0wmBAREZHbYDAhIiIit8FgQkRERG6DwYSIiIjcBoMJERERuQ0GEyIiInIbDCZERETkNhhMiIiIyG0wmBAREZHbYDAhIiIit8FgQkRERG6DwYSIiIjcBoMJERERuQ0GEyIiInIbDCZERETkNhhMiIiIyG0wmBAREZHbYDAhIiIit8FgQkRERG7j/wGMRUYf+3wkewAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import numpy as np\n", + "\n", + "# Apply seaborn style\n", + "sns.set(style=\"white\")\n", + "\n", + "# Generate a custom color palette with a gradient effect\n", + "# Let's create a gradient from light to darker orange\n", + "palette = sns.light_palette(\"orange\", n_colors=len(top_countries_series), reverse=True)\n", + "\n", + "# Create the pie chart with matplotlib, using the custom seaborn color palette\n", + "plt.figure(figsize=(10, 6))\n", + "plt.pie(top_countries_series, labels=top_countries_series.index, autopct='%1.1f%%',\n", + " startangle=90, colors=palette)\n", + "\n", + "plt.title(\"Distribution of 'Moderate' Cases Among Top 5 Countries and Rest\")\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGsAAALACAYAAAAkIv+KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACXJklEQVR4nOzdd3xP5///8WcSUQ0RK4ogIYgZYhOKhCL2JkYJRe1ZUVSp2iPE3iW1RcSqkk+NqNpatJE2rVqtGXsk5P37wy/vr3cTK1I5msf9dsvtk/e5rnOu1zlJP59Pnr2u61iZTCaTAAAAAAAAYAjWKV0AAAAAAAAA/g9hDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAABiQyWRKVeOmFkZ4vkaoAQDwfIQ1AADgmfz9/eXm5vbcr/bt27+xevr06SN/f/8Exx89eqSAgABVq1ZNJUuWlK+vr3788cfnXuv8+fMvvLeVK1f+W7fyTLdu3dInn3yiw4cPv1T/7du3q3PnzqpcubJKlSql+vXra/bs2bpz584rjx0WFqYhQ4a88nn/Ni8vr0R/7v/GOE///IsUKaKyZcuqTZs2CgkJSdDfzc1NgYGBL339tWvXasKECS/s1759e4t/rl51nGf5+++/1bVrV124cMF87E09WwDAq0mT0gUAAADj6tGjh1q3bm3+PHv2bP3888+aOXOm+ViGDBn+9Tri4uI0btw4bd++XU2aNEnQPn78eK1bt04DBw6Uk5OTlixZoo4dOyokJETOzs7PvfbHH3+s6tWrJ9qWJ0+e5Cj/lfzyyy/auHGjmjVr9tx+cXFxGjx4sL755hs1a9ZMbdq0Ufr06XX8+HEtWrRIO3fu1NKlS5UxY8aXHnvp0qWvWf2/Y+bMmW/k90ySqlWrph49ekh6EgJGR0dr27ZtGjJkiH755RcNHTrU3Hf16tXKkSPHS197zpw5Kl++/Av7jRw58tULfwnff/+9du/ebXHsTT5bAMDLI6wBAADPlDdvXuXNm9f8OUuWLEqbNq1KlSr1xmqIiIjQmDFjdOLECaVLly5B+19//aWVK1dq2LBh8vX1lSRVqVJFtWvX1oIFCzRmzJjnXj9v3rxv9H6Sy8KFC7V582bNnDlTtWrVMh+vVKmSypcvr7Zt22rWrFkW4cLbqmjRom9srCxZsiT4fahVq5YcHR21dOlSffDBBypTpowk/Wu/NwUKFPhXrpuYN/lsAQAvj2VQAADgte3bt0++vr4qU6aMKlSooIEDB+qvv/4ytwcHB8vNzU0//vijmjRpInd3dzVo0EDffPPNC689ZMgQPX78WKtXr1bWrFkTtO/fv1+PHj2yCCzSpk2r6tWrJ5hFkBQPHz5UmTJlEixfefTokSpWrGgRBq1du1b16tVT8eLFVb16dQUGBurx48fmdn9/f3Xs2FHr169X7dq1Vbx4cTVq1Eh79uyRJB04cEAdOnSQJHXo0OGZS8xiY2O1ePFivf/++xb3Ha9MmTLq06ePxR/958+f1yeffKIqVaqoWLFiqlSpkj755BNFR0dLerL05uDBgzp48KDc3Nx04MABSdKNGzf02WefqXLlyipRooRatmyp/fv3W4x3584dffbZZ6pUqZI8PDzUv39/LV26VG5ubhb9tm7dqqZNm8rDw0Oenp767LPPdPPmTXN7YGCgatWqpZkzZ6p8+fKqUqWKbt68mWCpzsOHDzVx4kRVq1ZNxYsXV4MGDbR161aLsU6ePKkPP/xQZcqUkYeHhzp27Kjjx48n+jxfRq9evfTOO+9o1apV5mP/XJ701VdfqU6dOipRooSqVq2qzz//3LwczcvLSxcuXNCGDRvk5uam8+fPKzg4WEWLFtXatWvl6emp8uXL67fffkuwDCr+GQ8aNEgeHh6qVKmSxowZo/v375vbE1vOFP/PXfxY8cGdt7e3ue8/z7t9+7bGjRunmjVrqkSJEqpfv77WrVtncV0vLy/NmDFDEyZMUOXKleXu7q7OnTvrzJkzSX6+AABLhDUAAOC1hISEyM/PTzlz5tTUqVM1dOhQHTt2TK1atdK1a9cs+nbr1k3e3t6aOXOm8uXLp379+r0wUJk4caJWrlypwoULJ9oeFRWl9OnTy9HR0eK4s7OzLl++rLt37z73+nFxcXr06FGCr/iQ5Z133lHt2rW1bds2i41Z9+3bp+joaDVq1EiSNG/ePI0YMUKVKlXS3Llz1bZtWy1YsEAjRoywGO/kyZNatGiR+vTpo1mzZsnGxka9e/fWzZs3VaxYMX322WeSpM8+++yZy2FOnTql6Oho1ahR45n31aNHD7Vo0UKSdP/+fXXo0EFRUVEaOXKkFi1apA4dOmjLli2aNm2apCdLb4oWLaqiRYtq9erVKlasmB4+fKgPP/xQYWFh6t+/v2bOnKkcOXKoS5cuFoFNjx49tG3bNvXu3VvTpk3T3bt3NWXKFIt6Zs+erQEDBqhUqVKaMWOGevbsqe3bt6t9+/Z68OCBud/Fixe1e/duTZs2TUOHDpWDg4PFdUwmk3r27KlVq1apU6dOmjNnjjkgit9X5s6dO+rSpYsyZ86swMBATZs2Tffv31fnzp11+/btZz6z57G3t5e7u7uOHDmSaPvmzZs1adIktW3bVosWLVLPnj21ceNGffHFF5KeLDdydHRUtWrVtHr1amXPnl2S9PjxYy1evFhffvmlhg4dKldX10Svv3z5ct29e1cBAQHq1q2b1q5dq0GDBr10/dWrV9fHH39sriV+qdfTHjx4IF9fX23atEldunTR7NmzVaZMGQ0bNkxz58616Lts2TL9/vvvGjdunMaMGaOTJ08acr8jAHhbsQwKAAAkWVxcnCZPnqwqVapY/HFeunRp+fj4aNGiRfrkk0/Mx9u3b6+ePXtKkqpWraomTZpo1qxZqlat2jPH+OfsjH+6fft2ontupE+fXtKTP9zjv0/MsGHDNGzYsATH7ezsdOzYMUlSo0aNtH79eh05ckRly5aVJG3ZskX58+dXiRIldPv2bc2ePVutWrXS8OHDJT1ZipUpUyYNHz5cnTp1UsGCBc31BgcHm5eX2dnZqV27dvrhhx9Uu3Zt82yYAgUKPHM5TPyspdy5cz/32cQ7c+aMcuTIoQkTJpj34alYsaJ+/PFHHTx40Dxe/HOMX96zZs0aRUREaM2aNSpZsqQk6f3331f79u01efJkrV+/Xvv379eBAwcUGBioDz74wNynfv36ioqKkiTdvHlTc+bMUcuWLc1hlCQVKlRIbdu21fr169W2bVtJT2YsDRkyxPyc/+n777/X3r17NW3aNPn4+Eh68rt0//59TZ48WfXr19dvv/2m6OhodejQQaVLl5Yk5c+fX6tXr9bdu3dlb2//Us/tn7Jly6affvop0baDBw8qd+7catu2raytrVW+fHnZ2dmZZw4VLVpUadOmTXSZVffu3Z+5b1I8V1dXzZo1S9bW1qpWrZqsrKw0duxYRUZGqlChQi+sPUuWLObfuSJFiiT6uxMcHKzIyEitWrVKHh4ekp4820ePHmn27Nlq3bq1MmXKJEnKmDGjZs+eLRsbG0nS2bNnFRgYqOjoaGXOnPmF9QAAno+ZNQAAIMn++OMPXblyRfXr17c4njdvXnl4eJiDgHhPbw5sZWWlWrVq6aeffrKYWfGqXvQaYmvr5//fnV69emndunUJvr7++mtzn/LlyytXrlzasmWLpCfLcHbu3GmeVXPs2DE9ePBAXl5eFrNzvLy8JD2ZhRPv6T+aJZk3qH16ScuLpEnz5N+3xcXFvVT/IkWKaMWKFXJyctKZM2e0e/duLVq0SL///rtiYmKeed7+/fvl6OioYsWKWcw4qlGjhk6ePKmbN2/qhx9+kK2trWrWrGk+z9ra2hykSNLx48cVExOT4PekbNmycnJySvB7UqRIkefWZGVlpWrVqiV41leuXNGvv/6qggULKkuWLOrevbs+++wz7dixQ9myZdPgwYNfaUPgfzKZTLKyskq0rWLFivrjjz/UtGlTzZw5UydOnFCDBg1e6m1pz7vfeHXq1LH4XY4Pxg4dOvSS1b/YwYMH5eTkZA5q4jVs2FAPHz60eMNaiRIlzEGNlLTfYwDAszGzBgAAJNmNGzckPZlx8E/ZsmXTzz//bHEsfulHvKxZs8pkMunWrVuJbh78MjJkyJDoUqf4vUJeNIvCyclJJUqUeG4fKysrNWjQQGvXrtXw4cP13Xff6d69e2rQoIGk/3sOXbt2TfT8y5cvm79/9913E1xbevngRZJy5colSRavYP6n69evK0OGDEqbNq0kacmSJZo7d65u3LihbNmyqXjx4nr33Xefuyzoxo0bunLliooVK5Zo+5UrVxQdHa1MmTIlCMWe3l8ofnbJs35P/lnD82ZC3bhxQyaTyTxj5p8uX76sIkWK6Ouvv9acOXO0bds2rV69WunSpVOjRo00fPhw8zN5VZcuXXpm2OPj46O4uDitWLFCs2fPVmBgoJycnDRo0CCL4CoxdnZ2Lxz7n8v84p/vrVu3XrL6F7t582aCcaT/+7k9PdY/f4/jf/6v8nsMAHg2whoAAJBk8Usirl69mqDtypUrCZZDxAcF8a5evSobGxvzdZIif/78unPnjq5fv64sWbKYj//5559ycnJKcgj0T40aNdK8efN04MABbd26VeXKlZOTk5MkmV+PPXnyZLm4uCQ4N7GQ4nUUKVJE2bJl0549e8zLh/5p+PDhOn78uHbt2qXt27dr/PjxGjx4sJo2bWp+Tn379tWJEyeeOY69vb1cXFw0efLkRNtz586t9957T9HR0YqLi7MIbJ7eryh+35mrV68qf/78Fte4cuXKK70i3d7eXnZ2dlq2bFmi7fGvas+fP78mTZqkx48f66efftLGjRu1cuVK5c2bV126dHnp8eLdvHlTp06dMs+mSkz9+vVVv3593b59W+Hh4VqwYIEGDx6sMmXK6L333nvlMZ8WHwjGu3LliiTLUOzpzawl6d69e680hoODg/78888Ex+PHYnkTALw5LIMCAABJli9fPjk6Omrz5s0Wx8+dO6fjx48nmP2wc+dO8/cmk0nffvutypQpk+SZDpJUuXJlSbJ4s1RMTIx27dolT0/PJF/3n1xdXVWsWDFt2bJFu3fvVsOGDc1tJUuWlK2trS5duqQSJUqYv9KkSaOpU6fq/PnzLz3O00tLnsXa2lodO3bUrl279L///S9B+w8//KDdu3erTp06Sps2rY4cOaKMGTOqS5cu5qDm7t27OnLkiMVMiH/Ojilfvrz++usvZc2a1eK+9u3bp4ULF8rGxkbly5fXo0ePLOowmUwWP+uSJUsqbdq0CX5PDh8+rIsXLz5zlkxiypcvr3v37slkMlnUFBkZqVmzZunRo0f65ptvVLFiRV25ckU2Njby8PDQ559/rowZM+rixYsvPdbT5s6dq9jYWLVq1SrR9n79+pn3Y7K3t1fdunXVo0cPPXr0yDyz6kVL8p4n/o1h8bZs2SIrKyuVL19e0pMZZn///bdFn39uhvyi8cuVK6cLFy6Y92qKFxoaKltbW7m7uye1fADAK2JmDQAASDJra2sNGDBAQ4cO1cCBA9WwYUNFR0dr5syZcnBwUKdOnSz6T5w4UQ8fPlS+fPm0du1aRUVF6auvvnqtGpycnNSkSRONGzdODx8+lIuLi5YsWaJbt2691AyKs2fPPvOVzg4ODsqXL5/5c6NGjTRhwgSlSZNGderUMR/PnDmzunTpounTp+vOnTuqUKGCLl26pOnTp8vKyuqZb7JKTPyyrV27dsnBweGZ53bs2FGHDh1S79691bJlS1WrVk3W1tY6dOiQli9friJFimjgwIGSJHd3d61cuVLjx49XjRo1dPnyZS1atEhXr161eNtSxowZdezYMe3fv19FixZV06ZNFRQUpE6dOql79+7KmTOnvv/+ey1YsEDt2rWTra2typUrJ09PTw0bNkxXr15Vrly5tG7dOp0+fdq8xCtTpkzq2rWrZs2aJVtbW9WoUUPnz5/X9OnTVaBAAYu9jF6kWrVqKleunHr06KEePXrI1dVVP/30k2bMmKGqVasqS5YsKl26tOLi4tSzZ0917dpV6dOn17Zt23T79m3zXi/Pcv36dfPvw+PHj3Xt2jVt375dmzdvVvfu3Z+5ZK5ixYoaOXKkJkyYoPfff1+3bt3SzJkz5eLiYv4ZZsyYUT///LMOHjz4ysHHiRMnNGzYMNWvX18nTpzQjBkz1Lx5c/NMrho1amjevHmaN2+eSpYsqf/973/64YcfLK4RPwNsx44dev/99xO8eapp06ZasWKFevbsqT59+ih37tz63//+p/Xr16tXr17m8wEA/z7CGgAA8FqaNm2q9OnTa968eerZs6cyZMigqlWrasCAAQn2v/j88881b948nTt3TkWLFtXixYuf+dafVzF69GhlzJhRCxYs0L1791SsWDEtWbLEvCTmeebMmaM5c+Yk2ubt7a3Zs2ebP9evX18TJ05UjRo1EuyF069fPzk6OmrFihVauHChHBwcVKlSJQ0YMOCV3j5UsGBB1a9fX19//bX27t2bYDZKPFtbW82ePVurV6/Wxo0btXXrVsXExChPnjzq0aOH2rVrZ94LpUmTJjp//rzWr1+vFStW6L333lO1atXk6+urESNGKCoqSq6urmrbtq1Onjypjz76SOPGjVODBg309ddfa8qUKZo0aZJu374tJycnDRw4UH5+fuZapk2bpvHjx2vKlCl69OiRvL291aZNG/OrtCWpd+/eypYtm4KCgrR69WplypRJderUUb9+/V5qz5Z41tbWmj9/vqZPn6558+bp2rVreu+999SpUyfzzJbs2bNr4cKFmj59uoYNG6b79++rYMGCCgwMVMWKFZ97/d27d5tfJ29lZaWMGTOqaNGimjFjhmrXrv3M81q3bq3Y2FitWrVKK1asULp06VSpUiUNHjxYtra2kiQ/Pz+NHTtWnTt31pIlS176niWpZ8+eOnnypLp37y57e3t16dJFvXr1Mrd369ZN169f16JFixQbG6vq1avryy+/NL+uW5IqVKigypUra8qUKdq/f7/mz59vMca7776r5cuXa8qUKebgMX/+/Pryyy/VvHnzV6oXAPB6rEwveoUCAADAawoODtbQoUMVFhb20q+bxtvhwoULOn78uLy9vS32B+rTp4/OnTunDRs2pGB1AAC8nZhZAwAAgCSztraWv7+/vL291bx5c9nY2Gjv3r369ttvNW7cuJQuDwCAtxJhDQAAAJIsZ86cWrBggWbNmqV+/frp0aNHcnV11eTJk1W/fv2ULg8AgLcSy6AAAAAAAAAMhFd3AwAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIGwwj1SpbtqxiYmLk6OiY0qUAAAAAAFKBK1euKG3atDp8+PBz+xHWINV6+PChHj9+nNJlAAAAAABSiUePHull3vNEWINUK3v27JKksLCwFK4EAAAAAJAaeHt7v1Q/9qwBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAAG+tuLgXv13pbcPboJDqzVq5Txcu30zpMgAAAAAAr8gpu4N6tvFM6TKSHWENUr0Ll2/qzIXolC4DAAAAAABJLIMCAAAAAAAwFMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwppn8PLykpubm/mrcOHCKl26tNq1a6dDhw699vWPHDmiw4cPv7Dfhg0b5Ovrq7Jly6ps2bJq06aNtm/f/trjp4Rff/1Vu3btMn92c3NTcHBwyhUEAAAAAIABEdY8h5+fn8LDwxUeHq49e/Zo1apVypAhg7p06aKLFy++1rV9fX119uzZZ7abTCb17dtX48ePl4+Pj1atWqXVq1fr/fffV//+/TV//vzXGj8ldOvWTSdOnDB/Dg8Pl4+PTwpWBAAAAACA8aRJ6QKMzM7OTo6OjubP2bNn16hRo/T+++9rx44d+vDDD/+1sVesWKEdO3Zo7dq1KlasmPn4xx9/rMePH2vGjBmqX7++cuXK9a/V8G97+tkCAAAAAIAnmFnzitKkeZJvpU2bVpL04MEDBQQEyNvbWyVKlFCjRo0slikFBwerVq1aGjNmjMqUKaMePXrIzc1NkjR06FD5+/snOs6qVatUvXp1i6Am3ocffqilS5cqW7Zsr1RD/H8WL15cTZs21ZEjR8x97t+/r5EjR6pChQoqXbq0hg0bpoEDB1rUd/ToUbVt21bu7u6qXr26Ro0apTt37pjbf/rpJ/n6+srDw0PlypVT7969zTOQvLy8dOHCBc2cOVPt27eXlHAZVEhIiBo2bCh3d3d5eXlp9uzZevz4sSTp/PnzcnNz0/bt29WiRQsVL15cXl5eWr169Qt/ZgAAAAAAvE0Ia17BpUuXNHr0aNnZ2alatWqSpAEDBigkJEQjRoxQaGioatasqb59+2rnzp3m886ePavLly8rJCRE/fv3V3h4uCTp008/1bBhwxKM8/DhQ0VGRqp06dKJ1mFvb6+yZcuaA6OXqeGvv/7SqlWrNGnSJG3YsEHvvvuu/P39ZTKZJElDhgzRvn37NG3aNK1atUq3b9/Wli1bzOdHRESoU6dOqlq1qkJDQzV58mSdOnVKfn5+MplMevz4sbp166Zy5copNDRUS5cu1cWLF/Xpp59KktatW6ccOXLIz89PgYGBCe5p6dKlGjFihFq1aqXQ0FD17dtXixYt0vjx4y36jRs3Tt27d9e2bdtUvXp1ff755zp37tyLf3gAAAAAALwlWAb1HPPmzdPixYslSY8ePVJMTIxcXV0VEBCgXLlyKSoqSmFhYZo7d66qV68uSerdu7ciIiI0d+5c1axZ03ytHj16KE+ePBbXt7e3l729fYJxb968KUlycHB4YY0vW0NsbKxGjRqlIkWKSJI6deqknj176sqVK3r48KG2b9+uhQsXqnLlypKkSZMm6ejRo+ZxFi1aJE9PT3Xv3l2S5OLioilTpqhmzZo6ePCgChcurOjoaGXPnl1OTk7KkyePAgICdO3aNUlSlixZZGNjIzs7O2XKlMniHkwmkxYsWKB27dqpbdu25uvfuHFDkyZNUp8+fcx9O3bsKG9vb0lS//799fXXX+vHH39M8GwBAAAAAHhbEdY8R+vWrc1LdqytrZUpUyaLcOX06dOSpDJlylicV65cOU2dOtXimIuLy0uPmylTJllZWSk6OvqFfV+lBldXV/P38fcRGxurn3/+WZLk4eFhbn/nnXfk7u5u/vzzzz/rzz//tOgTLyoqShUqVFCXLl30xRdfaMaMGapYsaKqVaumunXrvvAerl+/rqtXrya4h/Llyys2Nla///67smbN+tx7AAAAAADgv4Kw5jkcHBzk7Oz8yueZTCbz3jbx0qVL99Lnp02bVsWLF7eY2fK0W7duqVevXurVq9cr1RC/bOqf/WxsbCRJcXFxz7xeXFycGjRoYJ5Z87QsWbJIkgYNGiRfX1/t3r1b+/fv1xdffKGFCxcqJCQk0bGfruFZY0qyuI9n3QMAAAAAAP8V7FnzGuI3Cn56o15JOnz4sAoUKPBa127ZsqX27NmjU6dOJWhbtmyZDh8+rNy5cydLDW5ubrKystLx48fNx2JiYizGLliwoH777Tc5Ozubvx49eqRx48bpr7/+0u+//66RI0cqa9asatOmjWbMmKGFCxcqKipKERERzx0/W7ZsypYtW6L3YGtrq7x5877UfQAAAAAA8F/AzJrX4Orqqho1amjUqFGysrKSs7OztmzZorCwMAUEBDz3XDs7O0VFRSk6OlqZM2dO0N68eXOFhYWpU6dO6tu3rzw9PfXgwQOFhoZqyZIlGjJkiPm13UmtIV6ePHlUt25dffHFFxo9erQcHR01b948/f3337KyspIk+fn5qW3btho1apTatWunW7duadSoUXrw4IFcXFx09+5dbdmyRQ8ePFDXrl1lbW2tDRs2yMHBQfnz55ckpU+fXmfOnNHVq1fNb7KK17lzZ02bNk158uSRp6enfvrpJ82cOVOtWrWSvb29eR8fAAAAAAD+6whrXtPUqVM1depUDRs2TLdu3VKhQoUUGBioWrVqPfc8Pz8/88yTuXPnJmi3trbWrFmzFBQUpLVr12rKlClKkyaNChYsqJkzZ5o32X2dGp72xRdfaMyYMerdu7dMJpMaNGggDw8P2draSpJKlSqlhQsXavr06WrSpIns7OxUqVIlDRkyRGnTplXatGm1YMECTZkyRS1bttTjx49VqlQpLVmyRBkyZJAktW/fXhMmTNCvv/6q0NDQBM8jbdq0+uqrrzR27FjlyJFDH330kTp37vzS9wAAAAAAwH+BlYkNP1K9hw8fau/evapYsaI5WJGk2rVrq2HDhurZs2cKVvfviQ+8KjQcqDMXXryZMwAAAADAWFycMmtsX5+ULuOlxf8dGhYW9tx+zKyB0qZNq1GjRql8+fLq0aOHbGxstG7dOl28eFF16tRJ6fIAAAAAAEhV2GAYsrKy0vz58xUdHa1WrVqpSZMmOnbsmBYvXmzxqmwAAAAAAPDvY2YNJElFihTR4sWLU7oMAAAAAABSPWbWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIGkSekCgJTmlN0hpUsAAAAAACTBf/XvOcIapHo923imdAkAAAAAgCSKizPJ2toqpctIViyDAgAAAAAAb63/WlAjEdYAAAAAAAAYCmENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAD4T4uLM6V0CQDwStKkdAFASpu1cp8uXL6Z0mUAAADgX+CU3UE923imdBkA8EoIa5DqXbh8U2cuRKd0GQAAAAAASGIZFAAAAAAAgKEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGHNa/Dy8pKbm5v5q3DhwipdurTatWunQ4cOvfb1jxw5osOHDz+zvX379hbjFytWTFWqVNGgQYN0/vz5BLUGBga+dk2vIzY2VkuXLjV/DgwMlJeXV8oVBAAAAACAARHWvCY/Pz+Fh4crPDxce/bs0apVq5QhQwZ16dJFFy9efK1r+/r66uzZs8/tU7duXfP427dv16RJk3T27Fm1bt3aYvx169bJz8/vtep5XZs3b9a4cePMn/38/LRu3boUrAgAAAAAAOMhrHlNdnZ2cnR0lKOjo7Jnz65ChQpp1KhRevDggXbs2PGvj58uXTrz+Llz51alSpW0aNEi2djYaOrUqeZ+WbJkUfr06f/1ep7HZDJZfE6fPr2yZMmSQtUAAAAAAGBMhDX/gjRp0kiS0qZNK0l68OCBAgIC5O3trRIlSqhRo0bavn27uX9wcLBq1aqlMWPGqEyZMurRo4fc3NwkSUOHDpW/v/8rjW9vb6+mTZtqx44diomJkWS5DOr+/fsaNmyYPD09VaJECTVu3Fjffvut+fz27dtrxIgRatGihcqWLavQ0FD5+/urffv2FuM8fez8+fNyc3NTSEiI6tevL3d3d7Vs2VJHjhwx3+PQoUMlSW5ubjpw4ECCZVB//fWXBg0aJE9PT5UqVUqdO3dWRESExXj+/v6aMGGCKlWqpJIlS6pbt266dOnSKz0fAAAAAACMjLAmmV26dEmjR4+WnZ2dqlWrJkkaMGCAQkJCNGLECIWGhqpmzZrq27evdu7caT7v7Nmzunz5skJCQtS/f3+Fh4dLkj799FMNGzbslesoVKiQHjx4oDNnziRomz59uk6fPq358+dr69atev/999W/f3+LfW7Wrl2rDh06aMWKFapatepLjzt+/Hh1795dGzZsUP78+eXn56dz587Jx8dHn376qSQpPDxcHh4eFufduXNHbdq00aVLlzRnzhytWrVK6dKlU7t27XThwgVzv82bN+vGjRsKCgrSggULdOrUKQUEBLzawwEAAAAAwMDSpHQBb7t58+Zp8eLFkqRHjx4pJiZGrq6uCggIUK5cuRQVFaWwsDDNnTtX1atXlyT17t1bERERmjt3rmrWrGm+Vo8ePZQnTx6L69vb28ve3v6V68qYMaMk6fbt2wnazp49q/Tp0ytPnjzKmDGj+vbtq3LlysnBwcHcp0iRImrQoMErj9u1a1fVr19fkvTFF1/ohx9+0Jo1azRw4EDzfTg6OiY4LzQ0VNHR0QoODjYvjZoyZYpq1qypr7/+Wp988omkJ89j9OjRsrW1laurq3x8fLR79+5XrhMAAAAAAKMirHlNrVu3Ni8Fsra2VqZMmSzCldOnT0uSypQpY3FeuXLlLPaUkSQXF5dkqys+pIkPbZ720UcfqXv37qpUqZLc3d3l6empBg0aWNTt7OycpHErVKhg/t7W1lbFixdXZGTkC8+LjIyUi4uLxR426dKlk7u7u8X5efPmla2trfmzvb29YmNjk1QrAAAAAABGxDKo1+Tg4CBnZ2c5OzsrT548Lz0LxmQymfe2iZcuXbpkq+vUqVOys7NLNADy8PDQ7t27NWPGDBUrVkwhISHy8fHR/v37X6mWR48eJTj2z3t6/PixrK1f/Gv2z82H48XFxVlcM34fIAAAAAAA/qsIa/5l8RsFx2+0G+/w4cMqUKDAvzLmnTt3FBISojp16ljMQok3Y8YMHTlyRN7e3ho+fLi2b9+uPHnyWGx6/E+2tra6c+eOxbE///wzQb8TJ06Yv4+JidGpU6dUrFgxSZKVldUzr+/m5qYzZ87o2rVr5mMPHz7UyZMn/7XnBAAAAACAERHW/MtcXV1Vo0YNjRo1Srt27dIff/yhmTNnKiwsTH5+fs89187OTlFRUYqOjn5mnwcPHujKlSu6cuWKLl68qPDwcHXt2lUmk0n9+vVL9Jxz585p5MiR2r9/vy5cuKDt27fr4sWLCTb9fVqpUqUUERGh0NBQnTt3TrNmzUp0eVNAQIB27dql3377TZ9++qnu37+vli1bmu9Hkk6ePKkHDx5YnNegQQNlypRJ/fr1008//aSIiAgNGjRI9+7dU6tWrZ77nAAAAAAA+C9hz5o3YOrUqZo6daqGDRumW7duqVChQgoMDFStWrWee56fn58WLlyoqKgozZ07N9E+27Zt07Zt2yQ9WYLk6OiomjVraurUqXrvvfcSPWfkyJGaMGGCBg8erBs3bsjJyUmDBg1So0aNnllLw4YN9csvv2jMmDF69OiR6tatqw8//FDHjh2z6NemTRtNmDBBFy9eVMmSJbV8+XJlz55dklSxYkWVLFlSrVu31qRJkyzOs7e3V1BQkMaPH6+OHTtKerLPz8qVKxNsugwAAAAAwH+ZlelZm4UAr+D8+fPy9vbWsmXLLDYZNjJvb29JUoWGA3XmwrNnLwEAAODt5eKUWWP7+qR0GQAg6f/+Dg0LC3tuP5ZBAQAAAAAAGAhhDQAAAAAAgIGwZw2SRe7cuXX69OmULgMAAAAAgLceM2sAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQNKkdAFASnPK7pDSJQAAAOBfwv/XA/A2IqxBqtezjWdKlwAAAIB/UVycSdbWVildBgC8NJZBAQAAAPhPI6gB8LYhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAgDcgLs6U0iUAAIC3RJqULgBIabNW7tOFyzdTugwAwH+YU3YH9WzjmdJlAACAtwRhDVK9C5dv6syF6JQuAwAAAAAASSyDAgAAAAAAMBTCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADSZPSBaRmXl5eunDhgvmzlZWV7OzsVLRoUfXt21flypV7resfOXJEJpNJZcuWfW6/DRs2aO3atYqMjJQkFSxYUB07dlTt2rUtam3SpIl69+79WjUBAAAAAIDnY2ZNCvPz81N4eLjCw8O1Z88erVq1ShkyZFCXLl108eLF17q2r6+vzp49+8x2k8mkvn37avz48fLx8dGqVau0evVqvf/+++rfv7/mz5//WuMDAAAAAIBXx8yaFGZnZydHR0fz5+zZs2vUqFF6//33tWPHDn344Yf/2tgrVqzQjh07tHbtWhUrVsx8/OOPP9bjx481Y8YM1a9fX7ly5frXagAAAAAAAJaYWWNAadI8ydDSpk0rSXrw4IECAgLk7e2tEiVKqFGjRtq+fbu5f3BwsGrVqqUxY8aoTJky6tGjh9zc3CRJQ4cOlb+/f6LjrFq1StWrV7cIauJ9+OGHWrp0qbJly5bouceOHVOHDh1UpkwZVahQQUOHDlV0dLS5/aeffpKvr688PDxUrlw59e7d2zxT6Pz583Jzc9OBAwfM/f95zN/fX3369JGfn59Kly6tBQsWSJK+++47NW3aVO7u7qpVq5YCAgIUExPzcg8WAAAAAIC3AGGNwVy6dEmjR4+WnZ2dqlWrJkkaMGCAQkJCNGLECIWGhqpmzZrq27evdu7caT7v7Nmzunz5skJCQtS/f3+Fh4dLkj799FMNGzYswTgPHz5UZGSkSpcunWgd9vb2Klu2rDkwetpPP/2k9u3bq2DBglqzZo2mT5+uH3/8UZ07d9bjx4/1+PFjdevWTeXKlVNoaKiWLl2qixcv6tNPP32lZ7F9+3ZVrlxZ69evV/369bVnzx7169dPLVu21ObNmzVy5Eht27ZNgwcPfqXrAgAAAABgZCyDSmHz5s3T4sWLJUmPHj1STEyMXF1dFRAQoFy5cikqKkphYWGaO3euqlevLknq3bu3IiIiNHfuXNWsWdN8rR49eihPnjwW17e3t5e9vX2CcW/evClJcnBweOWaFy9eLDc3N40YMUKS5OrqqqlTp6pRo0YKDw9XqVKlFB0drezZs8vJyUl58uRRQECArl279krjODg4qEuXLubPAwcOVMuWLdW6dWtJUt68eTVq1Ch9+OGHOn/+vHLnzv3K9wIAAAAAgNEQ1qSw1q1bq3379pIka2trZcqUySJcOX36tCSpTJkyFueVK1dOU6dOtTjm4uLy0uNmypRJVlZWFkuXXlZkZKQ8PT0tjhUuXFj29vY6ffq0qlWrpi5duuiLL77QjBkzVLFiRVWrVk1169Z9pXGcnZ0tPv/888/66aeftG7dOvMxk8kkSYqKiiKsAQAAAAD8JxDWpDAHB4cEocTLMJlM5r1t4qVLl+6lz0+bNq2KFy+uo0ePJtp+69Yt9erVS7169VL58uUTjP2smmxtbSVJgwYNkq+vr3bv3q39+/friy++0MKFCxUSEpLouY8fP05w7J/3ExcXpy5duqhJkyYJ+j69STMAAAAAAG8z9qwxuPiNgo8cOWJx/PDhwypQoMBrXbtly5bas2ePTp06laBt2bJlOnz4cKKzVdzc3BLUExERoTt37sjV1VW///67Ro4cqaxZs6pNmzaaMWOGFi5cqKioKEVERJgDnTt37pjPP3PmzAvrLViwoP744w85Ozubv/7++29NnDhRd+/efcW7BwAAAADAmJhZY3Curq6qUaOGRo0aJSsrKzk7O2vLli0KCwtTQEDAc8+1s7NTVFSUoqOjlTlz5gTtzZs3V1hYmDp16qS+ffvK09NTDx48UGhoqJYsWaIhQ4Yk+truTp06ydfXV1988YV8fX119epVffHFFypatKgqVaqkO3fuaMuWLXrw4IG6du0qa2trbdiwQQ4ODsqfP7/Sp08vJycnffXVV3JxcdGNGzc0ffp0WVlZPfd+PvroI/Xr108zZ85UvXr19Pfff2vYsGHKnTs3M2sAAAAAAP8ZhDVvgalTp2rq1KkaNmyYbt26pUKFCikwMFC1atV67nl+fn7mGS1z585N0G5tba1Zs2YpKChIa9eu1ZQpU5QmTRoVLFhQM2fOlLe3d6LXLVmypBYuXKiAgAA1btxYGTJkUM2aNTVw4EDZ2toqc+bMWrBggaZMmaKWLVvq8ePHKlWqlJYsWaIMGTJIkiZOnKixY8eqUaNGcnZ21tChQ9W1a9fn3k+dOnU0bdo0zZs3T3PnzlWmTJnk5eWlQYMGveSTBAAAAADA+KxMz9qABPiPiw+jKjQcqDMXXn2jZQAAXpaLU2aN7euT0mUAAIAUFv93aFhY2HP7sWcNAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBpEnpAoCU5pTdIaVLAAD8x/G/NQAA4FUQ1iDV69nGM6VLAACkAnFxJllbW6V0GQAA4C3AMigAAIA3gKAGAAC8LMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAJBs4uJMKV0CAADAWy9NShcApLRZK/fpwuWbKV0GALz1nLI7qGcbz5QuAwAA4K1HWINU78LlmzpzITqlywAAAAAAQBLLoAAAAAAAAAyFsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADCRVhTVeXl5yc3PTkiVLEm3/7LPP5ObmpsDAwNcap3379vL39zd//u677/Tbb79Jkg4cOCA3NzedP3/+tcZIijVr1sjNzU1jx459qf6vUuv58+fl5uamAwcOvG6ZAAAAAACkaqkqrJEkW1tbbd++PcHxR48e6dtvv5WVldVrjxEYGKhhw4ZJki5cuKDu3bvr2rVrkiQPDw+Fh4crZ86crz3OqwoODla+fPkUEhKihw8fJuu1c+bMqfDwcHl4eCTrdQEAAAAASG1SXVhTqVIlHT9+XH///bfF8R9++EF2dnbJEqJkypRJ9vb2kiSTyWTRljZtWjk6OsrGxua1x3kVUVFROnbsmAYNGqRbt25p27ZtyXp9GxsbOTo6Km3atMl6XQAAAAAAUptUF9a4u7srV65c+uabbyyOb926VXXr1k0ws2bt2rVq0KCB3N3dVapUKfn6+urEiRPmdi8vL02YMEE+Pj6qUKGCDh48aF4Gdf78eXl7e0uSOnTooMDAwARLi7y8vDR//nx17dpVJUuWlJeXl3bu3KmdO3eqdu3aKlWqlDp37myemSM9CV4++ugjeXh4qEqVKho4cKCuXLny3PsODg6Wg4ODatSoodKlS2vVqlUJ+hw+fFgtWrSQu7u7GjZsqIiICIvzS5QooVu3blmcU7NmTU2bNi3BMqgzZ86oc+fOKlOmjDw8PNS5c2edPn3afN6NGzc0atQoVatWTe7u7mrdurXFEqrAwEC1a9dO/fv3V+nSpTVy5EhVqlRJM2fOtBh/1apVqlKlih49evTc+wcAAAAA4G2R6sIaSapbt65FWBMTE6OdO3eqXr16Fv127Nih0aNHq0uXLtq2bZuWLl2qhw8favjw4Rb9goKCNHz4cC1cuFClSpUyH8+ZM6fWrl0r6Un44Ofnl2g9s2fPlo+PjzZt2qTChQvrk08+0dy5czVp0iTNnTtXJ06c0IIFCyRJly5dkq+vr5ydnbVu3TrNnTtXd+7cUatWrXTv3r1Er//48WNt3LhRNWvWlI2NjXx8fHTs2DGLMObcuXPy8/NTkSJFtGHDBvXs2VOzZ882t9epU0dp0qSxWEJ29OhRnTt3Tk2bNk0w5oABA/Tee+9p/fr1Wrt2raytrdWrVy9zPX5+fjp8+LAmTZqk4OBgFSpUSJ07d9ZPP/1kvsahQ4eULVs2bdy4UZ06dVLDhg0VGhpqMU5ISIgaNmyoNGnSJHrvAAAAAAC8bVJtWHP8+HFdunRJkrRv3z5lyZJFRYsWteiXKVMmffnll2rUqJGcnJxUqlQpNW/eXJGRkRb9qlWrpsqVK6tEiRIWy4BsbGyUJUsWSZKDg4PSp0+faD3Vq1dX48aNlTdvXrVs2VJ3795V//795e7urooVK6py5cr69ddfJUkrV65Ujhw5NHz4cLm6uqp48eIKCAjQtWvXEswWirdnzx5duXLFHEbVqVNHNjY2Wr16tbnPmjVrlC1bNo0cOVKurq6qXbu2Pv74Y3O7nZ2d6tSpo02bNpmPbdq0SaVLl5azs3OCMc+ePassWbLIyclJBQoU0NixYzVmzBjFxcUpPDxcp06d0pQpU1S+fHkVKFBAo0aNUsGCBbVo0SKL6/Tp00d58uSRi4uLmjVrpj///FPHjh2TJP3xxx86duxYomERAAAAAABvq1QZ1hQvXlx58uQxzxLZunVrglk1klSuXDkVK1ZMs2bN0sCBA9W8eXONHTtWcXFxFv0SCytexdPnv/vuu5KkvHnzmo+lS5dOMTExkqSff/5Zv/76qzw8PMxflStX1sOHDxUVFZXo9devX6+sWbOqYsWKkqRs2bKpYsWKCg0NNc/GiYyMVNGiRS320ildurTFdZo2bapDhw7p0qVLio2N1bZt254ZlPTv319LlixRhQoV1L17d3377bcqXLiwrK2tFRkZKXt7exUqVMjc38rKSmXLlrUIwrJmzWre+0eSChUqpBIlSigkJETSk1k17u7uKlCgwDOeLAAAAAAAb59Uu3YkfilUq1atFBYWZl6u9LRNmzbJ399fDRo0UOnSpdW6dWtFRkZq9OjRFv3SpUv3WrUktoTnWW+liouLU8WKFTVy5MgEbU8HG/GuX7+uXbt2KTY2ViVKlLC4jslk0ubNm9WyZUtZWVklCKH+WVfZsmXl5OSkzZs3K3/+/Hrw4IHq1q2baJ1t27ZVnTp1tHv3bu3fv18zZszQnDlzFBISkmDT5Xgmk8lizMSea7NmzTRt2jQNGzZMmzZtUpcuXRK9FgAAAAAAb6tUObNGehLWHD16VOvXr1eePHnk6uqaoM/8+fPVvHlzjR8/Xm3btlW5cuV07tw5SQnf8vQsyfEq8KcVLFhQUVFRypkzp5ydneXs7CwHBweNHTs2wfIsSQoNDVVsbKxmzZqlkJAQi68sWbKYNxouXLiwTp48aZ7BI0knT55McC9NmjTRt99+qy1btqhmzZrKkCFDgjGvXbum0aNHKzY2Vk2bNtWkSZMUGhqqK1eu6ODBg3Jzc9Pt27ct6jWZTDpy5MgLZ8nUr19fDx8+1JIlS3T16lXVr1//lZ4fAAAAAABGl2rDmiJFisjZ2VlTpkxJdAmU9GSD4KNHj+rUqVM6e/asli5dqqCgIEmyCDWex87OTtKTZUa3b99+7bp9fX11+/ZtDRo0SBEREYqIiFD//v114sQJi2VF8davXy8PDw/VrFlThQoVMn8VLlxYvr6+OnXqlE6cOKE2bdro/v37+vTTTxUVFaXvvvtOgYGBCa7XpEkTnThxQmFhYc9cAuXg4KBdu3Zp+PDh+uWXX3Tu3DmtWrVKtra2Kl68uKpUqaIiRYpo4MCBOnjwoKKiojR69GhFRkbqww8/fO7929vbq1atWpo9e7a8vb2VMWPGpD1IAAAAAAAMKtWGNdKT2TV37tyRj49Pou0jRoxQtmzZ1K5dO7Vo0ULfffedJk6cKEkWr+9+nsyZM6tZs2aaOHGipk+f/to158mTR0FBQbp7967atGmjdu3aydbWVsuWLTNvZhzv5MmTioyMVNu2bRO9lq+vr9555x2tWrVK7733nr766iv9/fffatKkicaPH2+xwXC8XLlyqXz58nJwcDDvgfNPadKk0YIFC2Rtba2OHTuqXr16+v777zV//nzlzZtXNjY2Wrx4sYoWLapevXqpWbNm+vXXX7V06VKLt2k9S9OmTfXgwQM2FgYAAAAA/CdZmV52PQ9gEMHBwQoMDFRYWJisrZOeN3p7e0uSKjQcqDMXopOrPABItVycMmts38T/BQgAAAD+7+/QsLCw5/ZLtRsM4+1z6tQp/f7775oxY4batWv3WkENAAAAAABGxV+7eGscP35cw4cPV8mSJV+4tw0AAAAAAG8rZtbgrdG2bdtn7r8DAAAAAMB/BTNrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADCRNShcApDSn7A4pXQIA/Cfw36cAAADJg7AGqV7PNp4pXQIA/GfExZlkbW2V0mUAAAC81VgGBQAAkg1BDQAAwOsjrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAUpm4OFNKlwAAAIDnSJPSBQApbdbKfbpw+WZKlwEAb4RTdgf1bOOZ0mUAAADgOQhrkOpduHxTZy5Ep3QZAAAAAABIYhkUAAAAAACAoRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABhIqgtrvLy85ObmpiVLliTa/tlnn8nNzU2BgYGvNU779u3l7+9v/vzdd9/pt99+kyQdOHBAbm5uOn/+/GuNkRRr1qyRm5ubxo4dm+zXdnNzU3Bw8DPb/f391b59+2Qd89dff9WuXbuS9ZoAAAAAAKSkVBfWSJKtra22b9+e4PijR4/07bffysrK6rXHCAwM1LBhwyRJFy5cUPfu3XXt2jVJkoeHh8LDw5UzZ87XHudVBQcHK1++fAoJCdHDhw+T9drh4eHy8fFJ1mu+SLdu3XTixIk3OiYAAAAAAP+mVBnWVKpUScePH9fff/9tcfyHH36QnZ1dsoQomTJlkr29vSTJZDJZtKVNm1aOjo6ysbF57XFeRVRUlI4dO6ZBgwbp1q1b2rZtW7Je39HRUenSpUvWawIAAAAAkNqkyrDG3d1duXLl0jfffGNxfOvWrapbt26CmTVr165VgwYN5O7urlKlSsnX19diNoeXl5cmTJggHx8fVahQQQcPHjQvgzp//ry8vb0lSR06dFBgYGCCZVBeXl6aP3++unbtqpIlS8rLy0s7d+7Uzp07Vbt2bZUqVUqdO3c2z8yRngQvH330kTw8PFSlShUNHDhQV65cee59BwcHy8HBQTVq1FDp0qW1atWqBH3+/PNPffzxxypTpowqVKigAQMGWIwbGhqqhg0byt3dXd7e3vrqq6/MbU8vgzKZTJo9e7bef/99lSpVSkOHDk0wk+fSpUvq37+/ypYtqwoVKqh79+46c+aMud3f31/+/v6aMGGCKlWqpJIlS6pbt266dOmS+blduHBBM2fOTPblVQAAAAAApJQkhTXHjh1L7jreuLp161qENTExMdq5c6fq1atn0W/Hjh0aPXq0unTpom3btmnp0qV6+PChhg8fbtEvKChIw4cP18KFC1WqVCnz8Zw5c2rt2rWSniyN8vPzS7Se2bNny8fHR5s2bVLhwoX1ySefaO7cuZo0aZLmzp2rEydOaMGCBZKehBy+vr5ydnbWunXrNHfuXN25c0etWrXSvXv3Er3+48ePtXHjRtWsWVM2Njby8fHRsWPHFBERYe5z69YttW3bVjExMfrqq6+0ZMkSnT17Vv369ZP0JMwaMmSIGjVqpNDQUA0YMECTJ09OdJ+a+fPna+HChfrkk08UHBysjBkzauvWreb2e/fumQOWoKAgLV++XJkzZ1bLli3NYYwkbd68WTdu3FBQUJAWLFigU6dOKSAgQJK0bt065ciRQ35+fq+9xxAAAAAAAEaRpLCmTZs2qlOnjhYsWKDLly8nd01vRN26dXX8+HFzMLBv3z5lyZJFRYsWteiXKVMmffnll2rUqJGcnJxUqlQpNW/eXJGRkRb9qlWrpsqVK6tEiRJKmzat+biNjY2yZMkiSXJwcFD69OkTrad69epq3Lix8ubNq5YtW+ru3bvq37+/3N3dVbFiRVWuXFm//vqrJGnlypXKkSOHhg8fLldXVxUvXlwBAQG6du1agtlC8fbs2aMrV66Yw6g6derIxsZGq1evNvfZunWr7t69q6lTp6p48eIqWrSoxowZo1KlSpkDHB8fH3Xu3FkuLi6qV6+eRowYkWDpk8lk0vLly9WhQwfVr19f+fPn19ChQ1WkSBFzny1btujWrVuaNGmSChcurEKFCunLL79UhgwZtGbNGnM/e3t7jR49Wq6uripfvrx8fHx09OhRSVKWLFlkY2MjOzs7ZcqUKdH7BgAAAADgbZMmKScFBQUpJCRE8+bNU0BAgCpXrqxmzZrJ29tbtra2yV3jv6J48eLKkyePtm/frg4dOmjr1q0JZtVIUrly5RQVFaVZs2bp999/159//qnTp08rLi7Oop+zs/Nr1fP0+e+++64kKW/evOZj6dKlMy9H+vnnn/Xrr7/Kw8PD4hoPHz5UVFRUotdfv369smbNqooVK0qSsmXLpooVKyo0NFSDBw+WnZ2dIiMj5eLiIgcHB/N5hQsXVuHChSVJkZGRCZ5Ry5YtE4wVHR2tK1euqESJEhbHS5UqZa7v559/1s2bN1WuXLnn3kPevHktfqfs7e0VGxub6D0CAAAAAPBfkKSwpmzZsipbtqxGjBihb7/9ViEhIRo4cKAyZMig+vXrq2nTpipWrFhy15rs4pdCtWrVSmFhYeblSk/btGmT/P391aBBA5UuXVqtW7dWZGSkRo8ebdHvdTfWTZMm4Y/iWW+liouLU8WKFTVy5MgEbfGbGj/t+vXr2rVrl2JjYy0ClLi4OJlMJm3evFktW7ZMtIYX1ZiY+Lr/ubHy0+fHxcUpX758mjNnToLz7ezszN8/PUsJAAAAAIDU4LU2GH7nnXfUoEEDLVq0SJs2bVKhQoX09ddfq3nz5mratKnFHiVGVLduXR09elTr169Xnjx55OrqmqDP/Pnz1bx5c40fP15t27ZVuXLldO7cOUkJw4hnSY5XgT+tYMGCioqKUs6cOeXs7CxnZ2c5ODho7NixCZZnSU82BY6NjdWsWbMUEhJi8ZUlSxbzRsMFChTQmTNndPv2bfO5p06dUqVKlfT333/L1dU1wWuyx40bpz59+lgcy5w5s3LmzKkjR45YHD958qT5+0KFCunixYuyt7c330OuXLk0ZcoUHTp06LWfEQAAAAAAb6vXCmvu37+vjRs3ys/PTw0bNtQvv/yiVq1aafbs2SpRooQGDx6siRMnJletya5IkSJydnbWlClTEl0CJT3ZIPjo0aM6deqUzp49q6VLlyooKEjSk02JX0b8TJHIyEiLICSpfH19dfv2bQ0aNEgRERGKiIhQ//79deLECRUqVChB//Xr18vDw0M1a9ZUoUKFzF+FCxeWr6+vTp06pRMnTqhBgwZycHDQ4MGDFRERoZMnT2rkyJEqVKiQcuTIoa5du2rr1q1avny5zp49q02bNmnlypXy8vJKMOZHH32kr7/+WmvXrtUff/yhgIAA/fTTT+b2hg0bysHBQX369NGPP/6oqKgo+fv7a8+ePXJzc3vpZ5E+fXqdOXNGV69eTdrDBAAAAADAYJIU1nz//fcaMmSIPD09NWTIEMXGxmrMmDEKDw/XqFGjVKNGDY0aNUotWrRI9PXQRlK3bl3duXNHPj4+ibaPGDFC2bJlU7t27dSiRQt999135gDqn7NMniVz5sxq1qyZJk6cqOnTp792zXny5FFQUJDu3r2rNm3aqF27drK1tdWyZcvMmxnHO3nypCIjI9W2bdtEr+Xr66t33nlHq1at0rvvvqtFixbp0aNHat26tbp06aICBQqY377k5eWl0aNH6+uvv5aPj49mzpypoUOHqnHjxgmu27ZtWw0ePFhz5sxRo0aN9Ouvv6p58+bmdnt7ewUFBSlz5szq3LmzmjdvrkuXLmnx4sWJznB6lvbt22vXrl3PfMsWAAAAAABvGyvTy67leUrhwoWVPXt2NWnSRM2aNbPYCPdpy5cv16FDhzRjxozXLhRIbt7e3pKkCg0H6syF6BSuBgDeDBenzBrbN/F/QQEAAIB/V/zfoWFhYc/tl6QNhmfNmqXKlSub31r0LO3bt1f79u2TMgQAAAAAAECqlKRlUEOGDNGOHTuSuxYAAAAAAIBUL0lhTcaMGV/7VdUAAAAAAABIKEnLoLp166YxY8bojz/+UOHChc1vO3pauXLlXrs4AAAAAACA1CZJYc3IkSMlSdOmTZMkWVlZmdtMJpOsrKz0yy+/JEN5AAAAAAAAqUuSwpply5Yldx0AAAAAAABQEsOa8uXLJ3cdAAAAAAAAUBLDGkn6448/NGPGDB08eFC3bt1S5syZVbZsWfXs2VOurq7JWSMAAAAAAECqkaSw5rffflPr1q1lY2MjLy8vZcuWTVeuXNF3332nXbt2ae3atQQ2AAAAAAAASZCksGby5MnKnTu3li9fLnt7e/Px27dv68MPP9S0adM0c+bMZCsSAAAAAAAgtbBOykmHDh1S9+7dLYIaSbK3t1fXrl116NChZCkOAAAAAAAgtUlSWJMmTRq98847ibalTZtWMTExr1UUAAAAAABAapWksKZEiRJasWKFTCaTxXGTyaSvv/5axYsXT5biAAAAAAAAUpsk7VnTt29ftWnTRg0bNlSdOnXk6OioK1eu6JtvvtEff/yhJUuWJHedAAAAAAAAqUKSwpoSJUpo4cKFmjJlimbOnCmTySQrKysVL15cCxYsULly5ZK7TgAAAAAAgFQhSWGNJFWsWFFr167V/fv3devWLWXMmFHvvvtuctYGAAAAAACQ6iQprHne256srKyUPn165cmTRxkyZEhyYQAAAAAAAKlRksKa9u3by8rKSpIsNhmOPyZJ1tbWaty4sUaPHi0bG5vXLBP49zhld0jpEgDgjeG/8wAAAIwvSWHNnDlz1K9fPzVu3Fj169dX1qxZdf36dW3fvl2rVq3S4MGDZWNjo+nTpyt37tz6+OOPk7tuINn0bOOZ0iUAwBsVF2eStbXVizsCAAAgRSQprFmwYIF8fX01ZMgQ87H8+fOrbNmysrOz044dO7R8+XJJ0rJlywhrAAAwEIIaAAAAY7NOykmnTp1S1apVE22rUKGCfvzxR0mSm5ub/vrrr6RXBwAAAAAAkMokKaxxdHTUgQMHEm07cOCAsmXLJkmKjo5WxowZk14dAAAAAABAKpOkZVBt2rTRlClTdP/+fdWuXVtZs2bV1atXtXPnTgUFBal37976+++/NWfOHFWoUCG5awYAAAAAAPjPSlJY07lzZ92/f18LFy40701jMplkb2+v3r17q1u3bgoJCVFMTIwGDBiQrAUDAAAAAAD8l1mZnn739iu6f/++jh8/ruvXr+u9995TkSJFlD59eknS48ePeWU3DM3b21uSFBYWlsKVAAAAAABSg5f9OzRJe9bEi4mJ0b1793Tr1i3lz59fly5dUnz2Q1ADAAAAAADw6pK0DEqS5syZo3nz5unBgweysrKSu7u7AgICFB0drcWLF7OxMAAAAAAAQBIkaWZNUFCQAgMD1alTJ61Zs8Y8m6Zdu3Y6d+6cpk+fnqxFAgAAAAAApBZJCmuWL1+url27qm/fvipWrJj5eLVq1dSvXz/973//S7YCAQAAAAAAUpMkhTUXL15U+fLlE23Lnz+/rl69+lpFAQAAAAAApFZJCmty5sypY8eOJdp28uRJ5cyZ87WKAgC8neLikvyCQQAAAAD/X5I2GG7evLkCAwOVLl06Va9eXZJ07949bd++XfPmzVOnTp2Ss0bgXzVr5T5duHwzpcsA3npO2R3Us41nSpcBAAAAvPWSFNZ89NFHOn/+vCZPnqzJkydLkjp06CBJatCggbp165Z8FQL/sguXb+rMheiULgMAAAAAAElJDGusrKw0evRo+fn56YcfftCNGzdkb2+vcuXKqVChQsldIwAAAAAAQKqRpLBm5syZatGihVxcXOTi4mLRdv78eS1evFifffZZctQHAAAAAACQqiRpg+FZs2bp0qVLibb9+OOPWrt27WsVBQAAAAAAkFq99Mya1q1b68cff5QkmUwmtWrV6pl9S5Qo8fqVAQAAAAAApEIvHdaMGTNG33zzjUwmk2bNmqVmzZopR44cFn2sra2VMWNGffDBB8leKAAAAAAAQGrw0mFNgQIF1KtXL0lPNhhu0aKF3nvvvX+tMAAAAAAAgNQoSRsMx4c2165dU0xMjEwmkyQpLi5O9+/f1+HDh9WmTZvkqxIAAAAAACCVSFJYExERoUGDBikqKirRdisrK8IaAAAAAACAJEhSWDNx4kTdvHlTQ4YM0Xfffae0adOqRo0a2rNnj/bs2aNly5Yld50AAAAAAACpQpJe3f3jjz+qb9++6tixo3x8fHT//n35+vpq7ty5qlmzppYvX57cdQIAAAAAAKQKSQprYmJi5OLiIklycXFRRESEua1p06Y6fvx4ctQGAAAAAACQ6iQprMmVK5fOnTsn6UlYc+fOHZ0/f16SlDZtWt28eTP5KgQAAAAAAEhFkhTWfPDBB5oyZYq2b9+u9957T/nz51dAQIBOnz6txYsXK0+ePMldJwAAAAAAQKqQpLCmV69eKl26tNatWydJGjp0qHbs2KHGjRvrhx9+UO/evZO1SAAAAAAAgNQiSW+DMplMmjFjhmJjYyVJVatW1YoVK3T27FkVK1ZMefPmTdYiAQAAAAAAUotXmllz+vRpNWvWTEuWLJEk2draSpJu3bqlFi1aaO7cuXr8+HHyVwkAAAAAAJBKvHRYc/78eXXo0EFXr15Vvnz5LNpsbW31ySef6MaNG/L19dWlS5eSvVAAAAAAAIDU4KXDmvnz5ytTpkzasGGD6tSpY9H27rvvqmPHjlq3bp3eeecdzZs3L9kL/a/w8vKSm5ub+atw4cIqXbq02rVrp0OHDr329Y8cOaLDhw8nQ6VPREdHa+3atS/sN2/ePI0cOTLRtvbt21vcs5ubm4oXL67q1atr9OjRun//vrmvl5eXAgMDX7q+ixcvasuWLS/dHwAAAAAAo3vpsGb//v3q0qWLsmTJ8sw+jo6O8vPz0759+5KluP8qPz8/hYeHKzw8XHv27NGqVauUIUMGdenSRRcvXnyta/v6+urs2bPJVKk0ceJEhYaGvrDf7t27Va1atWe2161b13zP4eHh2rJliz766COtWbNGEyZMMPdbt26d/Pz8Xrq+IUOGaO/evS/dHwAAAAAAo3vpsOby5ctycXF5Yb9ChQrp77//fp2a/vPs7Ozk6OgoR0dHZc+eXYUKFdKoUaP04MED7dixI6XLs2AymV7Y59atW/rll19UsWLFZ/ZJly6d+Z4dHR3l7Oystm3bqkGDBtq6dau5X5YsWZQ+ffpkqR0AAAAAgLfRS4c1WbJk0eXLl1/YLzo6Wg4ODq9VVGqUJs2TF3OlTZtW0pPlQBMmTJCPj48qVKiggwcP6vHjx1q6dKlq166tEiVKqHbt2lq5cqX5Gm5ubpKevErd399fknTp0iX1799fZcuWVYUKFdS9e3edOXPGfM61a9fUp08fVahQQe7u7mrdurUOHjwoSfL399eGDRt08OBB87UTEx4eLg8PD9nZ2b3yfb/zzjvme4+/76eXQe3atUstW7aUh4eHqlSponHjxunBgweSniyvOnjwoDZs2CAvL69XHhsAAAAAACN66bCmXLlyCg4OfmG/kJAQFS1a9LWKSm0uXbqk0aNHy87OzmIpUVBQkIYPH66FCxeqVKlSGj9+vGbPnq1evXpp06ZNatu2rb788kstXbpU0pPQRJI+/fRTDRs2TPfu3VP79u3N11q+fLkyZ86sli1bmjeB/vzzz/Xw4UMFBQVp06ZNypcvn3r06KF79+5p2LBhqlu3rjw8PMzXTszu3bv1/vvvv9I9P3r0SLt27dLGjRvVqFGjRPvs2LFDH3/8sapXr67g4GCNGjVKW7du1YABAyRJgYGB8vDwUN26dbVu3bpXGh8AAAAAAKNK8+IuT7Rv315t2rTR+PHj1b9/f73zzjsW7TExMQoICNCePXs0f/78ZC/0v2TevHlavHixpCehRUxMjFxdXRUQEKBcuXKZ+1WrVk2VK1eWJN25c0crV66Uv7+/GjRoIElycXHR+fPnNX/+fH344YdydHSUJNnb28ve3l5r167VrVu3NGnSJPPslS+//FIHDhzQmjVr1Lt3b509e1aFChVSnjx5lC5dOg0bNkwNGjSQjY2N7OzslC5dOtna2pqv/U8mk0nh4eHq1q3bc+9506ZN2r59u/nzgwcPlCtXLnXu3Fndu3dP9Jz58+erVq1a6tGjhyQpX758MplM6tmzp3777TcVKFBAtra2Spcu3XP3UgIAAAAA4G3y0mFNiRIlNHToUI0dO1YbN25UpUqVlDt3bj1+/FgXL17UgQMHFB0drb59+6pq1ar/Zs1vvdatW5tnvFhbWytTpkyyt7dP0M/Z2dn8/e+//67Y2FiVKVPGok/58uX11Vdf6dq1a8qWLZtF288//6ybN2+qXLlyFscfPnyoqKgoSVKvXr00ePBgbd++XWXKlFGVKlVUv379BGHcs5w8eVLp0qVT/vz5n9vPy8tLgwYNkslk0k8//aQvv/xSlStXVvfu3S2WQT0tMjJS9erVS3C/8W0FChR4qRoBAAAAAHibvHRYI0lt27ZV4cKFtWjRIoWFhenhw4eSpPTp06tKlSry8/NTyZIl/5VC/0scHBwsgphnSZcunfn7Z230GxcXJ0mJBh5xcXHKly+f5syZk6Atfn+ZWrVqae/evdq7d6++//57LVmyRDNnztSaNWtUsGDBF9b4ordAxUufPr35nl1cXJQ9e3Z16tRJNjY2+vzzzxM9J7F7ft79AgAAAADwX/DKf/GWKVPGPLvj+vXrSpMmjTJmzJjshcGSq6urbG1tdeTIERUpUsR8/PDhw3J0dEx0U+dChQpp48aNsre3Ny8Tio2N1cCBA1WnTh3VrFlTU6ZMUaNGjeTj4yMfHx89ePBAnp6e2rVrlwoWLCgrK6vn1rVnzx7zMqVXUbFiRXXq1EmLFi2Sl5dXonveuLm56ejRo+rYsaPF/cY/DwAAAAAA/oteeoPhxGTJkoWg5g3JkCGDWrVqpRkzZmjz5s36888/9fXXX2vFihXy8/Mzhyp2dnaKiopSdHS0GjZsKAcHB/Xp00c//vijoqKi5O/vrz179sjNzU1p06bViRMnNGLECB0/flznz59XcHCw7t27Jw8PD/P1Ll++rHPnziWo6fr164qMjHzuK7ufp2/fvnJxcdHnn3+uu3fvJmjv0qWLvv32W82ePVt//PGHvvvuO33xxReqUaOGOaxJnz69Lly4wOviAQAAAAD/Ga8V1uDNGjp0qDp06KDJkyerXr16WrlypT777DP5+fmZ+/j5+SkoKEhDhw6Vvb29goKClDlzZnXu3FnNmzfXpUuXtHjxYnPYMW3aNOXJk0cff/yx6tSpo1WrVmny5MkqW7asJKlx48a6f/++6tevb36DVLzw8HCVKVPGYrnWq3jnnXf0xRdf6OLFi5o2bVqC9tq1a2vq1Knatm2bGjRooJEjR6pevXoKCAgw92ndurUiIyPVsGFDPX78OEl1AAAAAABgJFamZ22GAvzHeXt7S5IqNByoMxeiU7ga4O3n4pRZY/v6pHQZAAAAgGHF/x0aFhb23H7MrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMJA0KV0AkNKcsjukdAnAfwL/LAEAAADJg7AGqV7PNp4pXQLwnxEXZ5K1tVVKlwEAAAC81VgGBQBINgQ1AAAAwOsjrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQCDiIszpXQJAAAAAAwgTUoXAKS0WSv36cLlmyldBlI5p+wO6tnGM6XLAAAAAGAAhDVI9S5cvqkzF6JTugwAAAAAACSxDAoAAAAAAMBQCGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADCRVhTW9evVSixYtEhxv2bKl3NzcdPDgQYvjoaGhKly4sK5du5Ys40dHR2vt2rXmz+3bt5e/v3+yXPtl7Nu3T25uburZs+dL9T9//rzc3Nx04MCBl+rv5uam4ODg1ykRAAAAAIBUL1WFNZUqVdIvv/yiBw8emI/duHFDJ06cUM6cObV3716L/ocPH1bhwoWVNWvWZBl/4sSJCg0NTZZrJUVwcLDy5cunXbt26dKlS8l+/fDwcPn4+CT7dQEAAAAASE1SVVhTsWJFxcbG6sSJE+Zj33//vbJmzapmzZolGtZUrlw52cY3mUzJdq1XdevWLe3YsUPdu3fXu+++azHDJ7k4OjoqXbp0yX5dAAAAAABSk1QV1ri6uuq9997T0aNHzcf27t2rKlWqqEqVKoqIiNDVq1clSdevX1dUVJSqVKkiSYqJidGkSZNUtWpVeXh4qGXLlgoPD7e4/tq1a9WgQQO5u7urVKlS8vX1NQdD/v7+2rBhgw4ePCg3NzfzOXfv3tXQoUNVtmxZlSlTRv7+/rp37565PSoqSh999JE8PDxUpUoVDRw4UFeuXDG3t2/fXiNGjFCLFi1UtmzZZ87c2bx5s2JjY/X++++rRo0aWrdunR4/fmzRJzIyUh06dFCpUqVUq1Yt7d+/39x24MABubm5KSoqyuKcDh06aNCgQZIsl0Fdu3ZNffr0UYUKFeTu7q7WrVtbLDN78OCBAgIC5O3trRIlSqhRo0bavn27uT04OFi1atXSmDFjVKZMGfXo0UONGzfW0KFDLcbfu3evSpQooRs3biR63wAAAAAAvG1SVVgjPVkKdezYMfPn8PBweXp6yt3dXfb29uYA5siRI0qXLp3KlCkjSRo6dKj27dunyZMna8OGDapbt666d++uXbt2SZJ27Nih0aNHq0uXLtq2bZuWLl2qhw8favjw4ZKkYcOGqW7duvLw8LAIeb799ltlz55dwcHBmjhxorZu3aoFCxZIki5duiRfX185Oztr3bp1mjt3ru7cuaNWrVpZBDpr165Vhw4dtGLFClWtWjXR+16/fr3Kly+vLFmyyMfHR3/99Ze5dkm6ffu2OnbsKHt7e61du1aff/655syZY24vX768cufOrU2bNpmP/f333zp06JCaNm2aYLzPP/9cDx8+VFBQkDZt2qR8+fKpR48e5roHDBigkJAQjRgxQqGhoapZs6b69u2rnTt3mq9x9uxZXb58WSEhIerfv7+aNm2q7du3WyxjCwkJkZeXlzJlypTofQMAAAAA8LZJtWGNyWRSRESErly5Ik9PT9nY2KhSpUrmpVCHDh1S2bJl9c477+jPP//U5s2bNW7cOFWoUEEuLi7q1KmT6tWrp0WLFkmSMmXKpC+//FKNGjWSk5OTSpUqpebNmysyMlKSZG9vr3Tp0snW1laOjo7metzd3dW/f3/lzZtX3t7e8vT01MmTJyVJK1euVI4cOTR8+HC5urqqePHiCggI0LVr1/TNN9+Yr1GkSBE1aNBAhQoVUubMmRPcc2RkpE6ePKl69epJkqpUqaJMmTJp9erV5j5btmzR/fv3NX78eBUsWFCenp769NNPze1WVlZq0qSJNm/ebD62efNmvffee6pYsWKCMc+ePauMGTMqT548cnZ21rBhwzRjxgzZ2NgoKipKYWFhGjlypKpXr658+fKpd+/e8vb21ty5cy2u06NHD+XJk0cFCxZUgwYNFBMTYw507ty5o507dyYaFgEAAAAA8LZKk9IFvGmVKlXSjRs39Pvvvys8PFxFixZVlixZJEmenp6aOXOmpCf71cSHGz///LMkydfX1+JasbGxypgxoySpXLlyioqK0qxZs/T777/rzz//1OnTpxUXF/fcelxcXCw+Ozg46MKFC+Zxf/31V3l4eFj0efjwocVyJGdn5+eOsX79etna2uqDDz6QJPP369at04ULF+Tk5KTIyEi5uLjI3t7efN4/x23cuLFmzpypY8eOycPDQ6GhoWrUqJGsrRNmfr169dLgwYO1fft2lSlTRlWqVFH9+vX1zjvv6PTp05JknrUUr1y5cpo6deozn0/mzJnl7e2tkJAQ1a9fX9u2bZO9vb15qRoAAAAAAP8FqS6see+995QvXz4dO3ZM+/bts/hDv0qVKvrss8906tQpRUREaOzYsZL+b2Pgr7/+WunTp7e4XnxQsWnTJvn7+6tBgwYqXbq0WrdurcjISI0ePfq59djY2DyzLS4uThUrVtTIkSMTtD0dqjxvU9/Y2FiFhoYqNjbWYrNkk8mkuLg4rVmzRv3795eVlVWCYClNGstfj9y5c6t8+fLatGmT0qdPr9OnTyswMDDRcWvVqqW9e/dq7969+v7777VkyRLNnDlTa9aseWatJpMpwZj/vLdmzZqpe/fuunbtmjkset4zBAAAAADgbZPqlkFJUuXKlXX06FEdO3ZMnp6e5uNOTk5ycXHR119/rSxZspg3Ai5YsKAk6cqVK3J2djZ/BQcHmzfUnT9/vpo3b67x48erbdu2KleunM6dOyfp/8IeKyurV6qzYMGCioqKUs6cOc1jOjg4aOzYseblVS+ya9cuXb9+XSNHjlRISIj5a+PGjSpUqJDWr1+vR48eqXDhwjpz5oyuX79uPjd+OdbTmjZtqm+//VZbtmxR6dKlE53VExMTo3HjxuncuXPy8fHRmDFjtHPnTllbW2vXrl3m53rkyBGL8w4fPqwCBQo8936qVKkiR0dHrVmzRocPH2YJFAAAAADgPydVhjWVKlXStm3bZGVlpdKlS1u0Va1aVdu2bVOlSpXM4UrBggVVo0YNjRw5Uv/73/907tw5LViwQPPmzVPevHklSTlz5tTRo0d16tQpnT17VkuXLlVQUJCkJ+GFJNnZ2eny5cvmEOdFfH19dfv2bQ0aNEgRERGKiIhQ//79deLECRUqVOilrrF+/XrlzJlTrVq1UqFChSy+OnXqpCtXrmjnzp2qV6+esmbNqoEDByoiIkIHDx7Ul19+meB6tWvX1r1797R8+fJnBiVp06bViRMnNGLECB0/flznz59XcHCw7t27Jw8PD7m6uqpGjRoaNWqUdu3apT/++EMzZ85UWFiY/Pz8nns/1tbWaty4sebOnasSJUrI1dX1pZ4DAAAAAABvi1QZ1lSoUEEPHjxQhQoVZGtra9FWpUoV3bt3z2LGjSRNmzZNH3zwgT777DP5+PgoJCREX375pZo0aSJJGjFihLJly6Z27dqpRYsW+u677zRx4kRJMr++u3Hjxrp//77q16+vS5cuvbDOPHnyKCgoSHfv3lWbNm3Url072draatmyZeZ9dp7n6tWr2rt3r1q3bp3oUqH69evL0dFRq1atkp2dnb766ivZ2tqqTZs2+uSTT9SlS5cE57z77ruqW7eu4uLiVLdu3WeOPW3aNOXJk0cff/yx6tSpo1WrVmny5MkqW7asJGnq1KmqWbOmhg0bpoYNG+q7775TYGCg6tSp88L7atq0qR48eMCsGgAAAADAf5KVKX6NDvCWOHDggLp166a9e/da7N3zqry9vSVJFRoO1JkL0clVHpAkLk6ZNbavT0qXAQAAAOBfFP93aFhY2HP7pboNhvH2ioqKUmRkpObOnasmTZq8VlADAAAAAIBRpcplUHg7/fnnnxo6dKgyZcqk/v37p3Q5AAAAAAD8K5hZg7eGl5eXjh8/ntJlAAAAAADwr2JmDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABhImpQuAEhpTtkdUroEgN9DAAAAAGaENUj1erbxTOkSAElSXJxJ1tZWKV0GAAAAgBTGMigAMAiCGgAAAAASYQ0AAAAAAIChENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gBACouLM6V0CQAAAAAMJE1KFwCktFkr9+nC5ZspXQZSKafsDurZxjOlywAAAABgIIQ1SPUuXL6pMxeiU7oMAAAAAAAksQwKAAAAAADAUAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsOZf5O/vr/bt27/WNYKDg+Xm5pZMFUmxsbFaunRpso4ZGBgoLy+v57a7ubkl+tW0adOXugYAAAAAAKlFmpQuAG/W5s2bNW7cOHXs2PGZfXx8fFS1atVkHTdHjhxat25dguNp0jz5FfTz81Pbtm2TdUwAAAAAAN5GhDWpjMlkemGfdOnSKV26dMk6ro2NjRwdHZ/Znj59eqVPnz5ZxwQAAAAA4G3EMqg3yMvLS4sWLVLv3r3l4eGhChUqaMyYMXr06JG5z44dO9SgQQOVKFFCvr6+unjxYoJrBAYGPvPY48ePNWnSJFWrVk3FixdXnTp1tHLlSklPljcNHTpUkuTm5qYDBw4oMDBQ7dq1U//+/VW6dGl98cUXCZZBRUZGqlu3bipXrpyKFy8ub29vLV68OFmfzdPLoM6fPy83NzfNmzdPnp6e8vb21p07d3T79m2NGDFCFStWVJkyZdShQwedOHEiWesAAAAAACClEda8YdOnT1e5cuUUGhqqTz75REFBQdq8ebMk6ejRo+rdu7dq166t0NBQNWnSRPPnz3+l669YsULffPONpk2bpu3bt6tdu3b6/PPPdfjwYfn4+OjTTz+VJIWHh8vDw0OSdOjQIWXLlk0bN25MsMfO/fv35efnp0yZMmnVqlXavHmz6tSpowkTJuiXX35JhifybBs2bNBXX32lgIAApU+fXh999JHOnTunefPmac2aNSpVqpTatGmjn3/++V+tAwAAAACAN4llUG9YlSpV1KFDB0lSnjx5tHz5ch09elSNGzdWUFCQSpcurV69ekmS8uXLp8jISC1btuylr3/27FnZ2dkpd+7cyp49u9q1a6f8+fMrX758Spcunezt7SUpwZKkPn36mNuOHj1qPn7//n116NBBbdu2NS9T6tOnjxYuXKjTp0+rSJEiL1XXxYsXzeHQ044dO/bMc3x9fVWgQAFJ0v79+3X8+HH98MMPypQpkyRpwIABOnr0qJYtW6bx48e/VB0AAAAAABgdYc0b5urqavHZ3t5esbGxkp4sN/L09LRo9/DweKWwpm3bttq5c6eqVaumIkWKyNPTU/Xq1VPWrFmfeU7WrFnNQc0/ZcmSRb6+vtq8ebN+/vlnnT17VhEREZKkuLi4l64re/bsWr58+Uv3lyRnZ2fz96dOnZLJZFKNGjUs+sTExOjhw4evdF0AAAAAAIyMsOYNS5s2bYJj8Zv+WllZJQhAbG1tX3jNp/e8cXFx0bfffquDBw9q37592rVrlxYsWKBx48apSZMmiZ7/vM2Er1y5olatWilLlizy8vJSlSpVVKJECVWrVu2FdT0tTZo0FuHLy3i6rri4OGXIkEHBwcEJ+iX2TAEAAAAAeFsR1hhI4cKFEywLOnnypMVnW1tb3blzx/z5zp07unbtmvnzsmXLlDVrVtWrV0+enp765JNP1KlTJ23dulVNmjSRlZXVK9W0efNm3bhxQ9u3bzcHR6dPn5b0cm+WSi6FChXSnTt3FBsba14aJUnDhw9X4cKF1a5duzdWCwAAAAAA/yY2GDYQPz8/RUREaMKECfrjjz8UGhqqoKAgiz6lSpXS1q1bdfToUf3222/69NNPZWNjY26/fv26Ro8erbCwMF24cEF79+7VL7/8Yt4vxs7OTtKTEOjBgwcvrClHjhy6f/++vvnmG128eFHh4eEaMGCApCdLkN6UqlWrqkiRIurfv79++OEH/fnnnxo3bpyCg4MTLC0DAAAAAOBtxswaAylSpIgWLFigSZMmKSgoSAULFlT37t01efJkc58BAwboxo0b6tSpk+zt7eXn56dbt26Z23v16qXY2FiNGTNGV65ckaOjo9q0aaNu3bpJkipWrKiSJUuqdevWmjRp0gtrqlOnjk6dOqXx48frzp07cnJyUosWLRQWFqYTJ06oTZs2yf8gEmFjY6PFixdr0qRJ6tevn+7fvy9XV1fNnDlTlSpVeiM1AAAAAADwJliZ3uRaFsBAvL29JUkVGg7UmQvRKVwNUisXp8wa29cnpcsAAAAA8AbE/x0aFhb23H4sgwIAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMJA0KV0AkNKcsjukdAlIxfj9AwAAAPBPhDVI9Xq28UzpEpDKxcWZZG1tldJlAAAAADAIlkEBQAojqAEAAADwNMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoA+BfFxZlSugQAAAAAb5k0KV0AkNJmrdynC5dvpnQZ+A9yyu6gnm08U7oMAAAAAG8Zwhqkehcu39SZC9EpXQYAAAAAAJJYBgUAAAAAAGAohDUAAAAAAAAGQlgDAAAAAABgIIQ1AAAAAAAABkJYAwAAAAAAYCCENQAAAAAAAAZCWAMAAAAAAGAghDUAAAAAAAAGQlgDAAAAAABgIIQ1AAAAAAAABkJYAwAAAAAAYCCENQAAAAAAAAZCWAMAAAAAAGAghDUAAAAAAAAGQlgDAAAAAABgIIQ1AAAAAAAABkJYAwAAAAAAYCApHtZ4eXnJzc1NS5YsSbT9s88+k5ubmwIDAyVJwcHBcnNzeyO1nT9/Xm5ubjpw4IAkyd/fX+3bt38jY6ek+Gf8rK9Fixa9sVqio6O1du3aNzYeAAAAAAApLU1KFyBJtra22r59uzp16mRx/NGjR/r2229lZWVlPubj46OqVau+6RJTpfDw8ESPZ8iQ4Y3VMHHiRJ0/f14tWrR4Y2MCAAAAAJCSDBHWVKpUSXv37tXff/+tHDlymI//8MMPsrOz07vvvms+li5dOqVLly4lykx1HB0dU7oEmUymlC4BAAAAAIA3KsWXQUmSu7u7cuXKpW+++cbi+NatW1W3bl2LmTX/XAa1e/duNW3aVCVLllSlSpXk7++vmzdvmtv//PNPffzxxypTpowqVKigAQMG6Nq1a+b29evXq27dunJ3d1fdunX11VdfKS4u7qXqPnz4sDp06KDSpUurePHiqlu3rjZu3Ghu9/f3l7+/vyZMmKBKlSqpZMmS6tatmy5dumTuc+nSJfXv319ly5ZVhQoV1L17d505c8ZinJCQEDVs2FDu7u7y8vLS7Nmz9fjxY0kJl2olduzatWvq06ePKlSoIHd3d7Vu3VoHDx58qXt8lnPnzqlw4cLavXu3xfGhQ4eqTZs2kqSYmBhNmjRJVatWlYeHh1q2bGkxWyc4OFi1atUy/2fx4sXVtGlTHTlyxPz8NmzYoIMHD5p/5mfOnFHnzp1VpkwZeXh4qHPnzjp9+vRr3QsAAAAAAEZiiLBGkurWrWsR1sTExGjnzp2qV6/eM8+5fv26evXqpWbNmmnr1q2aOXOmDh06pIkTJ0qSbt26pbZt2yomJkZfffWVlixZorNnz6pfv36SpNWrV2vixInq1auXtmzZon79+mnBggWa/P/au/Ooqur9/+MvERRRIhxQMqcLAg6YoDibKMjXCEttsByqC2KmmTdKxWuOBXodCJVrqKG3Qn/WVeLrdJepXXNW0PWlbs44YgmKAyYIBPv3h8tzO4lTE5vD87HWWQs+nz189nnvjfLis/eZM+ee483OzlZERIR8fX31+eefKzU1VW3atNHEiRN18eJFy3Lr1q3TlStXlJycrCVLlujbb79VfHy8JCk/P9/yDJzk5GR98skncnV11fPPP28JdP7xj39o0qRJGjhwoNasWaMxY8YoKSlJM2fOvO/3durUqSosLFRycrLWrl2rZs2aaeTIkcrPz7/vbfxco0aNFBAQoHXr1lnaCgsL9cUXX2jAgAGSbgY3O3fu1Jw5c/T555/riSee0IgRI7R161bLOt9//71Wrlyp2bNn6/PPP1eNGjUUHR0twzA0ceJEPfHEE/Lz87OEPFFRUapfv75Wr16tf/7zn7Kzs9Prr7/+i48DAAAAAACzMcVtUNLNsCYpKUnZ2dmqX7++du7cqdq1a6tly5Z3XCc7O1tFRUV65JFH1LBhQzVs2FCJiYmWWScbNmzQ9evXFRcXJxcXF0nSe++9p/Xr16uoqEgLFy7Ua6+9ZgmEGjVqpB9++EHTpk3TmDFj7jrewsJCjR49WhEREZaZP8OHD1dqaqpOnTqlunXrSpKcnZ01ffp0OTg4yMPDQ6GhoZbZKOvXr1deXp5mz54te/ubpYiJidHevXv12Wef6fXXX9eSJUs0ZMgQDR48WJLUtGlTXblyRbNnz9Ybb7xxX+/tmTNn5OXlpUaNGsnR0VETJ05U3759VbVq1buu5+fnV2b7zp075eTkpAEDBmj69OkqKChQjRo19OWXX6qkpERPPPGETp8+rXXr1ik1NVUtWrSQJP35z3/W4cOHlZSUpMDAQElScXGxpk2bZrXMqFGjdOHCBbm5ucnR0VEODg6WW7LOnDmjLl26qGHDhnJwcFBsbKxOnDih0tJS2dmZJnsEAAAAAOAXM01Y07p1azVq1EgbN27USy+9pA0bNtx1Vo0ktWjRQmFhYRoxYoTq1aunrl27KjAwUL1795YkHT16VE2bNrUENZLk4+MjHx8fXbp0SefPn1dcXJzmzZtn6S8tLVVhYaGysrJUvXr1O+67cePGGjBggD7++GMdPXpUZ86c0eHDhyXJEhbdWs7BwcHyvbOzs4qLiyVJBw8e1NWrVxUQEGC17cLCQmVmZurSpUu6ePGi2rVrZ9XfoUMHFRcX68SJE6pTp85d3yNJev311zV27Fht3LhR7dq1U7du3RQWFnbX45Nu3n5VllvPEPqf//kfTZ8+XVu2bFFYWJjWrFmj4OBg1apVS9u3b5ckDRo0yGrd4uJiPfTQQ1ZtHh4elq+dnZ0ty5XlzTffVGxsrFasWKEOHTqoe/fuCgsLI6gBAAAAANgM04Q10n9vhRo4cKC2bNlyXx/ZPHfuXI0aNUrbtm3Trl27NHbsWLVr104fffSRZbZKWW49l2bChAnq0qXLbf3u7u7Kycm54/rHjx/XoEGD1KpVK3Xp0kUhISFydXW97VOLqlWrdtcxNGvWTB988MFtfU5OTnd8uO6tsd/p+H4aFklS7969tX37dm3fvl27du3SsmXLlJCQoM8++0zNmze/4/iaNGlyx75bY+zTp4/Wrl2rbt26afv27Vq8eLGk/z4YePny5apZs6bVej8PVsp6j+507IMHD1afPn301Vdfaffu3Zo/f74++OADpaamWmYzAQAAAABQkZlqOsITTzyhAwcOaPXq1WrUqJHVjIuyZGRkKDY2Vn/605/0yiuvaPHixYqNjdWePXuUm5srT09PnTp1SteuXbOs8+2336pz584qLi5W7dq1dfbsWTVp0sTy+ukzZe5m5cqVqlOnjpYtW6bIyEj16NHD8qya+/0EIy8vL3333Xdydna27P+RRx7R3LlzlZaWprp166pu3bqWB+7ekp6eLgcHB6tZOz/88IOl/6cPKC4qKtKMGTN09uxZhYaG6r333tPmzZtlZ2dn9eyYX+qZZ57Rzp07LWFJp06dJMkSAl24cMHq/U1JSVFKSsp9b/+nD5fOzc3V9OnTVVxcrAEDBmj27Nlas2aNLly48KsfmAwAAAAAgFmYKqxp0aKFmjRporlz597zFihJqlWrllasWKHZs2fr9OnTOnr0qDZs2KCmTZvK1dVVffv2lYuLi8aOHavDhw/rP//5j6ZMmSIvLy+5u7srMjJSn3zyiZKTk3XmzBlt2rRJU6dOlaOj411nxEhSgwYNdP78eX311Vc6d+6cvvjiC02dOlXSzYDkfjz11FNycXHRG2+8oYyMDGVmZio6Olrbtm2zfPpRRESEkpOTtWLFCp0+fVpr165VQkKCBg4cKGdnZ7m5ualhw4b66KOPlJmZqf3792vevHmWkKNatWr65ptvNGnSJP3f//2fsrKylJKSovz8/Ds+k+aWCxculPnKy8uzLNO+fXu5u7tr/vz5evrppy2zZpo3b66ePXtqypQp+vLLL3X27FktWbJEixYtUuPGje/r/ZFuzt7JycnR2bNn5eLioq1bt+qdd97RoUOHdPbsWa1cuVIODg5q3br1fW8TAAAAAAAzM9VtUNLN2TUffPCBQkND77msh4eHFixYoISEBK1YsUJ2dnbq1KmTlixZIjs7O9WoUUNJSUmaMWOGXnjhBTk6OiowMFDjx4+XJIWHh6t69er65JNPNHPmTNWtW1fPP//8fT2496WXXtKJEyc0btw4FRUVqWnTpoqKitL8+fP1zTff6PHHH7/nNpydnZWcnKxZs2YpIiJCJSUlatWqlZYuXWqZVRQeHq5q1arpo48+UmxsrBo0aKDIyEhFRERIujnzZNasWYqNjdXTTz+tJk2aaMKECRo+fLhlP++//75mzJih1157TdeuXdOf/vQnzZkzR+3bt7/r+Lp161Zme2BgoBYtWmT5vn///po3b57lU6B+ut/3339fkydP1tWrV9W4cWPFxMSof//+93xvbunXr582bdqksLAwffHFF1qyZIn+9re/6ZVXXlFBQYFatGihxYsXP1AABAAAAACAmVUx7veeHcDGBAUFSZI6PvWWTp27XM6jgS1q2tBVsWPuHTwDAAAAqBxu/R66ZcuWuy5nqtugAAAAAAAAKjvCGgAAAAAAABMhrAEAAAAAADARwhoAAAAAAAATIawBAAAAAAAwEcIaAAAAAAAAEyGsAQAAAAAAMBHCGgAAAAAAABMhrAEAAAAAADARwhoAAAAAAAATIawBAAAAAAAwEcIaAAAAAAAAEyGsAQAAAAAAMBHCGgAAAAAAABMhrAEAAAAAADARwhoAAAAAAAATsS/vAQDlraGbS3kPATaKcwsAAADAL0FYg0pv1Itdy3sIsGGlpYbs7KqU9zAAAAAAVCDcBgUAvyOCGgAAAAAPirAGAAAAAADARAhrAAAAAAAATISwBgAAAAAAwEQIawAAAAAAAEyEsAYAAAAAAMBECGsAAAAAAABMhLAGAAAAAADARAhrAAAAAAAATISwBgAAAAAAwEQIawAAAAAAAEyEsAYAAAAAAMBECGsA4HdUWmqU9xAAAAAAVDD25T0AoLz9/f/t1Lmcq+U9DNighm4uGvVi1/IeBgAAAIAKhrAGld65nKs6de5yeQ8DAAAAAABJ3AYFAAAAAABgKoQ1AAAAAAAAJkJYAwAAAAAAYCKENQAAAAAAACZCWAMAAAAAAGAihDUAAAAAAAAmQlgDAAAAAABgIoQ1AAAAAAAAJkJYAwAAAAAAYCKENQAAAAAAACZCWAMAAAAAAGAihDUAAAAAAAAmQlgDAAAAAABgIoQ1AAAAAAAAJkJYAwAAAAAAYCKENQAAAAAAACZCWFMB9erVS97e3paXj4+P/P39NWTIEKWlpf3q7e/fv1/p6el3XWb79u0aOnSo/P399dhjj6lv375avHixiouLLcvk5+dr+fLld93OggUL1KtXL0lSVlaWvL29tXfv3l99DAAAAAAAVFSENRVUeHi4duzYoR07dmjbtm1auXKlatWqpWHDhum77777VdseNGiQzpw5c8f+nTt36rXXXlNgYKD++c9/as2aNQoPD9eHH36oyZMnW5ZbunSpkpKS7nkcq1at+lXjBQAAAADAlhDWVFBOTk6qV6+e6tWrJzc3N3l5eWnatGm6ceOGNm3a9Lvu+9NPP1X37t0VEREhDw8PNWnSRP3799ebb76p1NRU5eXlSZIMw7jntmrWrKnatWv/ruMFAAAAAKAiIayxIfb29pKkatWqSZJu3Lih+Ph4BQUFydfXV08//bQ2btxoWT4lJUW9e/fWe++9p3bt2mnkyJHy9vaWJE2YMEHR0dFl7qdKlSo6fPiwsrOzrdr79eundevWycnJSQsWLFBCQoLOnTsnb29vZWVlKTo6Wm+88YbCw8Pl7++vJUuWWN0G9XOZmZnq2rWrxo0bp5KSEknSv//9bw0YMEBt2rRR7969FR8fr6Kiol/3xgEAAAAAYCKENTYiOztb06dPl5OTk3r06CFJioqKUmpqqiZNmqQ1a9YoODhYY8aM0ebNmy3rnTlzRjk5OUpNTdWbb76pHTt2SJL++te/auLEiWXu6+WXX1Zubq569eqll19+WQkJCdq3b58cHBzk4eEhe3t7hYeHKzw8XA0aNNCOHTvk7u4uSdq4caO6dOmi1atXKyws7I7Hc/r0ab3yyit6/PHHNXPmTFWtWlXbtm3TX/7yFz3//PNat26dpkyZon/9618aO3bsb/U2AgAAAABQ7uzLewD4ZRYtWqSlS5dKkn788UcVFRXJw8ND8fHxeuSRR5SZmaktW7YoMTFRgYGBkqTRo0fr8OHDSkxMVHBwsGVbI0eOVKNGjay27+zsLGdn5zL37e/vr5SUFC1btkxfffWV9uzZI0lyc3PTlClTFBwcrJo1a8rJyUlVq1ZVvXr1LOu6uLho2LBhdz22rKwsjRs3Tj169NC7776rKlWqSJISExP1/PPP64UXXpAkNW7cWNOmTdPLL7+srKwsPfroow/wDgIAAAAAYE6ENRXUCy+8oKFDh0qS7Ozs9PDDD1uFK0eOHJEktWvXzmq9gIAAxcXFWbU1bdr0gffv6empmJgYSTdvV9q+fbuSk5M1ZswYpaSkWG6n+rkmTZrcc9tTp05VcXGx3N3dLUGNJB08eFBff/211QOJbz0XJzMzk7AGAAAAAGATCGsqKBcXl/sKPn7OMAzLs21ucXR0vO/18/PzFRcXp2eeeUYtWrSQJHl4eMjDw0NPPfWUevbsqR07dtwxrLmfffXv319eXl6aOXOmevfuLS8vL0lSaWmphg0bpv79+9+2zk9n7wAAAAAAUJHxzBobdSss2b9/v1V7enq6PD09f/F2HR0dtXbtWq1cufK2vpo1a6pq1aqqU6eOJFnNinkQTz75pAYNGqTWrVtrwoQJlocLN2/eXCdPnlSTJk0sr/Pnz2vWrFm6fv36Lz4mAAAAAADMhLDGRnl4eKhnz56aNm2atm7dqpMnTyohIUFbtmxReHj4Xdd1cnJSZmamLl++fFufnZ2d3n77ba1cuVJTpkzR119/raysLO3atUujRo2Su7u7+vTpY9nO1atXdfLkSRUXFz/Q+O3s7PTuu+/qyJEj+vDDDyVJkZGR2rhxoxISEnTy5Ent3r1bEyZM0LVr15hZAwAAAACwGdwGZcPi4uIUFxeniRMnKi8vT15eXlqwYIF69+591/XCw8P14YcfKjMzU4mJibf1P/fcc6pXr54++ugjRUZG6vr166pbt66CgoI0a9Ysy61OISEh+uyzz/TUU08pOTn5gcffvHlzRUZGKiEhQUFBQerTp4/ef/99LVq0SImJiXr44YfVq1cvvf322w+8bQAAAAAAzKqKcesJrUAlExQUJEnq+NRbOnXu9llEwK/VtKGrYseElvcwAAAAAJjErd9Dt2zZctfluA0KAAAAAADARAhrAAAAAAAATISwBgAAAAAAwEQIawAAAAAAAEyEsAYAAAAAAMBECGsAAAAAAABMhLAGAAAAAADARAhrAAAAAAAATISwBgAAAAAAwEQIawAAAAAAAEyEsAYAAAAAAMBECGsAAAAAAABMhLAGAAAAAADARAhrAAAAAAAATISwBgAAAAAAwEQIawAAAAAAAEyEsAYAAAAAAMBE7Mt7AEB5a+jmUt5DgI3i3AIAAADwSxDWoNIb9WLX8h4CbFhpqSE7uyrlPQwAAAAAFQi3QQHA74igBgAAAMCDIqwBAAAAAAAwEcIaAAAAAAAAEyGsAQAAAAAAMBEeMIxKKycnRyUlJQoKCirvoQAAAAAAKoHvv/9eVatWvedyzKxBpVW9enXZ25NXAgAAAAD+GPb29qpevfo9l6tiGIbxB4wHAAAAAAAA94GZNQAAAAAAACZCWAMAAAAAAGAihDUAAAAAAAAmQlgDAAAAAABgIoQ1AAAAAAAAJkJYAwAAAAAAYCKENQAAAAAAACZCWAMAAAAAAGAihDUAAAAAAAAmQlgDAAAAAABgIoQ1AAAAAAAAJkJYAwAAAAAAYCKENah0SktLNX/+fHXv3l1t27ZVZGSkzp49W97Dwm9k0aJFGjp0qFXboUOHNGTIELVt21a9evXSxx9/bNXPOVGxXLlyRZMnT9bjjz8uf39/vfjii0pPT7f07969WwMGDNBjjz2mPn36aP369VbrFxYWatq0aercubP8/Pz01ltv6dKlS3/0YeAB5ObmauzYserUqZP8/Pw0fPhwZWZmWvq5xm3XyZMn5efnp5SUFEsb9bZN2dnZ8vb2vu11q/bU3fakpqYqNDRUvr6+evLJJ/Wvf/3L0peVlaVXX31V/v7+6tatm+Lj41VSUmK1/vLlyxUUFKQ2bdpo0KBBOnjw4B99CLhPe/fuLfP69vb2VlBQkCRqXiYDqGQWLFhgdOzY0fj3v/9tHDp0yAgPDzdCQkKMwsLC8h4afqXk5GTDx8fHGDJkiKXt0qVLRseOHY0JEyYYx48fN1atWmX4+voaq1atsizDOVGx/PnPfzbCwsKMtLQ048SJE8a0adOMNm3aGJmZmcbx48cNX19fIy4uzjh+/Ljx4YcfGi1btjR27dplWT86OtoIDg420tLSjIyMDKNfv37G4MGDy/GIcC8DBw40nnvuOSMjI8M4fvy4MXr0aKNbt25Gfn4+17gNKyoqMgYMGGB4eXkZq1evNgyDn+m2bOvWrYavr6+RnZ1t5OTkWF4FBQXU3QalpqYaLVu2NJKTk43Tp08bCxcuNHx8fIwDBw4YRUVFRkhIiDF8+HDjyJEjxqZNm4wOHToY8+bNs6yfkpJitGnTxvjf//1f49ixY8bYsWONDh06GLm5ueV4VLiTwsJCq+s6JyfH+OKLLwxvb29j1apV1PwOCGtQqRQWFhp+fn7G8uXLLW1Xr1412rRpY6xdu7YcR4Zf4/z588arr75qtG3b1ujTp49VWJOYmGh069bNKC4utrTNnTvXCAkJMQyDc6KiOXXqlOHl5WWkp6db2kpLS43g4GAjPj7emDRpkvHss89arRMVFWWEh4cbhnHzXPHx8TG2bt1q6T9x4oTh5eVlHDhw4I85CDyQK1euGFFRUcaRI0csbYcOHTK8vLyMjIwMrnEbNnfuXOOll16yCmuot+1avHix0bdv3zL7qLttKS0tNXr27GnMnDnTqj08PNxITEw01q5da7Ru3dq4cuWKpW/lypWGv7+/JXwLCQkxZs2aZekvLi42evToYSQmJv4xB4Ff5fr160bPnj2N6OhowzAMan4H3AaFSuXw4cO6fv26OnfubGl76KGH1LJlS6WlpZXjyPBrfPvtt3JwcNCaNWv02GOPWfWlp6erQ4cOsre3t7R16tRJp06d0sWLFzknKhhXV1ctXrxYvr6+lrYqVaqoSpUqysvLU3p6ulUtpZv13r9/vwzD0P79+y1ttzRr1kz169en3ibl4uKiuXPnysvLS5J06dIl/eMf/1CDBg3k6enJNW6j0tLS9Omnn2rmzJlW7dTbdh05ckQeHh5l9lF323Ly5EmdO3dOffv2tWpPSkrSq6++qvT0dLVq1UouLi6Wvk6dOumHH37QoUOHlJubq1OnTlnV297eXu3bt6feFURiYqIKCgo0fvx4SaLmd0BYg0rl/PnzkiR3d3erdjc3N0sfKp5evXppwYIFatSo0W1958+fV4MGDaza3NzcJEnff/8950QF89BDD6lHjx6qVq2apW3jxo06ffq0unfvfsd6FxQU6PLly8rOzparq6uqV69+2zLU2/wmTZqkzp07a/369YqJiZGTkxPXuA3Ky8vTuHHj9M4779xWN+ptu44ePapLly5p8ODB6tKli1588UVt27ZNEnW3NSdPnpQk5efnKyIiQp07d9Zzzz2nL7/8UhL1tnW3/ugyYsQIPfzww5Ko+Z0Q1qBSKSgokCSrX/QkqXr16iosLCyPIeF3duPGjTLrLd180CznRMV24MABTZgwQSEhIQoMDCyz3re+LyoqUkFBwW39EvWuKF5++WWtXr1aYWFhGjVqlL799luucRs0depU+fn53fZXd4mf6bbqxx9/1IkTJ3T16lWNHj1aixcvVtu2bTV8+HDt3r2butuYH374QZI0fvx4hYWFaenSperatatGjhxJvSuBFStWyNnZWQMHDrS0UfOy2d97EcB2ODo6Srr5S9utr6WbPwRq1KhRXsPC78jR0VFFRUVWbbd+qDs5OXFOVGCbN2/W22+/LX9/f82ZM0fSzX+0f17vW9/XqFGjzPNBot4VhaenpyQpJiZGGRkZSk5O5hq3MampqUpPT9fatWvL7Kfetsne3l579+5V1apVLXVr3bq1jh07pqSkJOpuYxwcHCRJERER6t+/vySpRYsWOnjwoJYtW/ZA9f75MtTb/FJTU9WvXz+ra5Wal42ZNahUbk2dy8nJsWrPyclR/fr1y2NI+J01aNCgzHpLUv369TknKqjk5GSNHj1aPXv2VGJiouWvL+7u7mXW0snJSc7OzmrQoIGuXLly2z/21Nu8Ll26pPXr1+vHH3+0tNnZ2cnT01M5OTlc4zZm9erVys3NVWBgoPz8/OTn5ydJmjJlioYNG0a9bVjNmjWtfnmTpObNmys7O5u625hbNbn1LLJbPD09lZWVRb1t2OHDh3X27NnbZk5S87IR1qBS8fHxUa1atbR3715LW15eng4ePKiAgIByHBl+LwEBAdq/f79KSkosbXv27FGzZs1Up04dzokKaMWKFXr33Xc1ePBgxcXFWU2Jbd++vfbt22e1/J49e+Tv7y87Ozu1a9dOpaWllgcNSzfvnc/OzqbeJnXx4kVFRUVp9+7dlrbi4mIdPHhQHh4eXOM2Zs6cOdqwYYNSU1MtL0l64403FBMTQ71t1LFjx+Tv729VN0n6z3/+I09PT+puY1q1aqWaNWsqIyPDqv3o0aNq3LixAgICdPDgQcvtUtLNetesWVM+Pj6qU6eOmjVrZlXvH3/8Uenp6dTb5NLT0y3X7E9R8zso74+jAv5ocXFxRocOHYzNmzcbhw4dMsLDw42QkBCjqKiovIeG38D48eOtPrr74sWLRkBAgDF+/Hjj2LFjxurVqw1fX18jJSXFsgznRMVx4sQJo1WrVsaoUaOMnJwcq1deXp5x9OhRo1WrVsbs2bON48ePG0lJSUbLli2NXbt2WbYRFRVl9OrVy9izZ4+RkZFh9OvXz+qcgfkMGzbMCAkJMfbt22ccOXLEiIqKMgICAoxz585xjVcCP/3obuptm0pKSoxnnnnGCA0NNdLS0ozjx48bsbGxRuvWrY0jR45Qdxv097//3fDz8zPWrl1rnD592li4cKHh4+Nj7Nmzx7hx44YRHBxsREREGIcOHTI2bdpkdOjQwViwYIFl/U8//dRo06aNkZKSYhw7dswYO3as0bFjRyM3N7ccjwr3MmHCBOOVV165rZ2al62KYRhGeQdGwB+ppKREcXFxSklJ0Y0bNxQQEKDJkyfr0UcfLe+h4TcQHR2tc+fO6ZNPPrG0ff3114qJidHBgwdVr149hYeHa8iQIZZ+zomKIzExUe+//36Zff3799fMmTO1bds2zZ49W6dOndKjjz6q0aNHKzQ01LJcfn6+YmNjtXHjRknS448/rnfeeUeurq5/yDHgwV27dk1z587V5s2bde3aNbVv317R0dFq3ry5JK5xW+ft7a0ZM2ZowIABkqi3rbp48aLmzp2r7du3Ky8vTy1bttTbb7+t9u3bS6LutmjZsmVKTk5Wdna2PDw8NHr0aAUHB0uSTp8+rWnTpik9PV0uLi569tlnNXr0aNnZ/ffGkKSkJH388ce6cuWKWrdurXfeeUctWrQor8PBfYiMjFStWrXK/L8cNb8dYQ0AAAAAAICJ8MwaAAAAAAAAEyGsAQAAAAAAMBHCGgAAAAAAABMhrAEAAAAAADARwhoAAAAAAAATIawBAAAAAAAwEcIaAAAAlDvDMMp7CAAAmIZ9eQ8AAAAAf5xvvvlGH3/8sdLS0nTp0iW5ubmpc+fOGj58uBo1alQuY1q4cKGqVaumYcOGlcv+AQAwG2bWAAAAVBLLly/XCy+8oNzcXL311ltasmSJhg8frn379unZZ5/V4cOHy2Vc8+bNU0FBQbnsGwAAM2JmDQAAQCWwf/9+xcTEaPDgwZo4caKlvWPHjgoODla/fv3017/+VSkpKeU4SgAAIDGzBgAAoFJISkqSs7OzoqKibuurXbu2oqOjFRQUpPz8fJWUlGj58uXq27ev2rRpo8DAQM2ZM0eFhYWWdYYOHaqhQ4dabWfv3r3y9vbW3r17JUkpKSlq2bKlMjIyNHDgQPn6+qpnz55KSkqyrOPt7S1JSkhIsHwNAEBlR1gDAABg4wzD0I4dO9S5c2fVqFGjzGVCQ0M1atQoOTk5afLkyZoxY4aCg4P1wQcfaPDgwUpOTtbIkSMf+EHApaWl+stf/qLQ0FAtXrxY/v7+mjVrlrZv3y5J+vTTTyVJzz77rOVrAAAqO26DAgAAsHGXL19WYWGhHn300Xsue/z4ca1atUpvvfWWhg8fLknq2rWr3NzcNG7cOG3btk09evS4730bhqGRI0fqueeekyS1a9dOmzZt0tatW9W9e3e1bdtWktSgQQPL1wAAVHbMrAEAALBxVatWlSSVlJTcc9l9+/ZJkp588kmr9ieffFJVq1a13OL0IPz8/CxfV6tWTbVr11Z+fv4DbwcAgMqCmTUAAAA2zsXFRTVr1tR33313x2Xy8/NVXFysq1evSpLq1atn1W9vby9XV1ddu3btgffv6Oho9b2dnd0D304FAEBlwswaAACASqBbt27au3ev1UOCf+qzzz5Tp06dLN9fuHDBqr+4uFiXL1+Wq6urpe3nM3WYLQMAwG+DsAYAAKASCA8P15UrVxQfH39b34ULF7R06VJ5enqqd+/ekqT169dbLbN+/XqVlJSoXbt2kqRatWrp/PnzVsvs37//F43Nzo7/kgIA8FPcBgUAAFAJtG3bVmPGjFF8fLwyMzPVr18/ubq66tixY0pKSlJhYaHi4+Pl4eGh/v37a/78+SooKFBAQIAOHTqkhIQEdezYUd27d5ck9ezZU19++aVmzJihXr16KT09Xampqb9obA899JAOHDigtLQ0tW/fXlWqVPkNjxwAgIqHsAYAAKCSeO2119SyZUstX75csbGxunr1qtzd3RUYGKgRI0bI3d1dkhQTE6MmTZpo9erVWrJkidzc3PTSSy9p5MiRllkwzzzzjM6cOaPPP/9cK1euVEBAgObPn68XX3zxgcc1YsQILVy4UJGRkdqwYYMeeeSR3/S4AQCoaKoYPN0NAAAAAADANLhBGAAAAAAAwEQIawAAAAAAAEyEsAYAAAAAAMBECGsAAAAAAABMhLAGAAAAAADARAhrAAAAAAAATISwBgAAAAAAwEQIawAAAAAAAEyEsAYAAAAAAMBECGsAAAAAAABMhLAGAAAAAADARAhrAAAAAAAATOT/A7RdBNAzUNvwAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Count the occurrences of each category and select the top 10\n", + "top_categories = data['Category'].value_counts().nlargest(10).index\n", + "\n", + "# Filter the DataFrame to include only the top 10 categories\n", + "data_top_categories = data[data['Category'].isin(top_categories)]\n", + "\n", + "# Plot\n", + "plt.figure(figsize=(12, 8)) # Adjust size as needed\n", + "sns.countplot(y='Category', data=data_top_categories, order=data_top_categories['Category'].value_counts().index)\n", + "plt.title('Top 10 Event Categories Distribution')\n", + "plt.xlabel('Count')\n", + "plt.ylabel('Category')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### zoom into countries" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "# Filter data for China and United States\n", + "china_cases = data[data['Region'] == 'China']\n", + "us_cases = data[data['Region'] == 'United States']\n", + "\n", + "# Get top 5 event categories for China\n", + "china_top_5 = china_cases['Category'].value_counts().nlargest(5)\n", + "\n", + "# Get top 5 event categories for United States\n", + "us_top_5 = us_cases['Category'].value_counts().nlargest(5)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "# Convert Series to DataFrame\n", + "china_plot_data = china_top_5.reset_index().rename(columns={'index': 'Category', 'Category': 'Category'})\n", + "us_plot_data = us_top_5.reset_index().rename(columns={'index': 'Category', 'Category': 'Category'})\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Categorycount
0Port Congestion242
1Port Closure116
2Port Disruption96
3Maritime Advisory71
4Maritime Accident24
\n", + "
" + ], + "text/plain": [ + " Category count\n", + "0 Port Congestion 242\n", + "1 Port Closure 116\n", + "2 Port Disruption 96\n", + "3 Maritime Advisory 71\n", + "4 Maritime Accident 24" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "china_plot_data" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/65/44v_jv_n0qx33txj6vvbf1k00000gn/T/ipykernel_33900/3247333995.py:9: FutureWarning: \n", + "\n", + "Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.\n", + "\n", + " ax_china = sns.barplot(x='count', y='Category', data=china_plot_data, palette='Oranges_r')\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7UAAAImCAYAAACM3K1sAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2fklEQVR4nO3dd3yN9///8edJJCVE7NorIVYisbeIKE2NUkXFDDVrK2LUas1Kkdi7aCliUy2folqlRmtLGxS1Z4xIJDm/P/xyvk4TJJVILn3cb7dz++Rc83WdvHs+nnm/r/dlMpvNZgEAAAAAYEA2qV0AAAAAAAD/FqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAkiSz2fyfPDcAwNgItQAAQxoyZIhcXV2f+2rbtm2K1jBw4MAEz/vtt98+c5+goKAX1h0ZGZmidSfk4MGD6tKlS6K2DQ8PV3BwsBo1aiRPT09VrVpV7du31//+978knzcqKkrjxo3Txo0bk7xvStq3b59cXV21b9++FD1PSEiIXF1ddfHixWQ53tmzZzVq1Cj5+PjI3d1dXl5e6t+/v06dOmW1Xdu2bV/430dcWwWAtC5dahcAAMC/0aNHD7Vq1cryfubMmTpx4oSCg4MtyzJlypSiNZw6dUoNGzaMFw4KFy78wn1Xrlz5zHX29vYvW1qSrVq1SmFhYS/cLiwsTB9++KFiY2PVrl07lShRQg8fPtTGjRvVvXt39enTRz169Ej0ea9du6YlS5Zo/PjxL1N+sitdurRWrlwpFxeXFD2Pl5eXVq5cqVy5cr30sb777jsNGjRIxYoVU/fu3ZU/f35duXJFS5YsUYsWLTRr1ixVr1490cd7//33VbNmzZeuCwBSGqEWAGBIBQsWVMGCBS3vs2XLJnt7e3l4eLyS80dGRurs2bNq3779vzrnq6ozOT1+/Fh9+/aVnZ2dvvrqK2XPnt2yzsfHRyNGjNC0adPk7e2tEiVKpGKlLy9Tpkyv5HeULVs2ZcuW7aWPc/78eQ0ePFg1a9bU1KlTZWtra1n31ltv6YMPPtDgwYP1v//9L9F/NMmdO7dy58790rUBQEpj+DEA4LX2008/qXXr1ipfvrwqV66sAQMG6PLly5b1ccM/f//9dzVt2lTu7u5q1KjRc4cQS1JoaKiio6NVsmTJFKl748aNcnV1VWhoqNXy7du3y9XVVSdOnJAk3blzR5988omqVasmNzc3tWjRQnv37rXax9XVVcuXL9ewYcNUqVIleXp6qk+fPrpx44akJ0O5165dq7///luurq4KCQlJsKZdu3YpNDRUffr0sQq0cXr37q02bdooOjraqt7WrVvL09NTZcqUUYMGDbR8+XJJ0sWLF1W3bl1JUkBAgLy9vS37HThwQG3atFHZsmVVqVIlDR48WLdu3bI63+HDh+Xn5ycPDw95eXlpyZIl6tChg4YMGWLZ5t69exo/frx8fHzk5uamhg0bavXq1VbH8fb21rhx49S+fXu5u7tr2LBhCQ4/Dg0NVdeuXVWuXDmVK1dOPXv21IULF6yOtWTJEjVo0EBubm6qWbOmRo0apfv37yf4eUrxhx8PGTJEHTp00Jo1a1S/fn2VKVNGTZo00e7du595DElaunSpoqKiNHz4cKtAK0kZMmTQ4MGD9d577+nu3buW5WazWfPmzZOXl5fc3d3VsmVLHTlyxLL+n8OP27Ztq2HDhmnu3Lny8vKSm5ubWrVqZbWP9PzfOQCkBEItAOC1tW7dOvn7+ytPnjwKDAxUQECADh8+rJYtW+rmzZtW23bt2lV169ZVcHCwihQpor59+2rXrl3PPHbcPYqrVq1SjRo1VKZMGbVu3Vq///57omqLjo5O8BUbGyvpSc+ng4ODNm/ebLXfpk2bVKxYMZUqVUqRkZFq3769duzYoX79+ik4OFi5c+dW586d4wXbL774QrGxsQoMDNSgQYP0ww8/aNy4cZKeDOWuXbu2cubMqZUrV8rLyyvBmnfv3i1bW1vVrl07wfU5c+bUiBEjVKZMGUnSzp071bNnT5UuXVozZ85UUFCQChQooDFjxuj3339Xrly5LMPFu3fvbvn5119/VYcOHZQ+fXpNnTpVQ4cO1f79+9WuXTs9evRI0pNh0B06dJAkBQYGqlevXpo7d64OHjxoqefRo0dq3bq1Nm7cqM6dO2vmzJkqX768hg0bptmzZ1vVvnz5crm5uWnmzJlq3rx5vGs7e/asWrVqpZs3b2rixIn67LPPdOHCBX3wwQeWtrRp0yZNnjxZfn5+WrBggXr27Kn169dr7NixCX5ez3Ls2DEtWLBAvXv31owZM2Rra6tevXpZBdJ/+vHHH1WqVCm9+eabCa6vWrWq+vXrp5w5c1qWHTx4UN9//71GjBihyZMn69q1a+revbvVHyX+adu2bdqxY4eGDx+uwMBA3bhxQ7169VJMTIykF//OASAlMPwYAPBaio2N1eeff64aNWpoypQpluXlypWTr6+vFixYoEGDBlmWt23bVj179pQk1axZU02bNtWMGTOeGeBOnjwpSYqIiNCUKVN0584dzZ07V+3atdPKlStfOPy2dOnSCS738/PTJ598ogwZMqh+/frasmWL+vXrJ0l68OCBfvjhB0ud69ev16lTp/TNN9+obNmykqRatWqpbdu2+vzzz7VmzRrLcYsXL2513+qRI0csvdEFCxZM1PDtK1euKGvWrMqYMeNzry3On3/+qaZNm2rYsGGWZZ6enqpcubL27dunsmXLWnq6CxYsqFKlSkmSpkyZoiJFimjOnDmWXseyZcvqnXfe0Zo1a+Tn56c5c+bI0dFR8+fPV4YMGSRJRYsWtbrPOiQkRKGhoVqxYoU8PT0lPfndRkdHa+bMmWrVqpWyZMkiScqbN68GDhxo2fefE0QFBwcrQ4YMWrx4seVe7apVq8rHx0fz58/X4MGDtX//fuXPn19+fn6ysbFRpUqV5ODg8NwwmpB79+4pJCTEMrzewcFBbdq00S+//KL69esnuM+VK1eSPGrA3t5ec+fOtXwG4eHhGj58uP78889ntt/o6GgtWLDA8hk8ePBAgwcP1smTJ1WmTJlE/c4BILkRagEAr6WzZ8/q+vXrGjBggNXyggULytPTU/v377da3rRpU8vPJpNJ9erVU1BQkB49eqT06dPHO36bNm1Up04dq4l0qlatqrfeekuzZ8/W1KlTn1vfP4fAxnl6WG+TJk20du1aHTlyRO7u7tqxY4eioqLUuHFjSdLevXuVM2dOlS5d2qp3rU6dOpo0aZLu3r0rJycnSfHv4c2dO7ciIiKeW+M/2draWnrkEqNz586SngSfs2fP6vz58zp69KikJ7MeJyQiIkK///67OnXqJLPZbLmuAgUKyNnZWT/99JP8/Pz0yy+/qFatWpZAKz0JT/ny5bO8379/v/Lly2cJtHEaN26s1atX6/fff7f80eJFgfCXX35RpUqVlD59ektNmTJlUoUKFfTzzz9LkqpUqaKVK1eqWbNm8vHxUe3atdWoUSOZTKZEf2bSk/tsn75fPO6+1uf9vpL6u5EkFxcXS6CVpPz580t6Eqqft8/TE7DF9QzH1fZvfucA8LIItQCA19KdO3ckSTly5Ii3LkeOHJZ7UuP8c/bZ7Nmzy2w2Kzw8PMFQW7RoURUtWtRqWebMmVWuXLl4j09JiJub2wu3qVy5st58801t3rxZ7u7u2rx5sypVqmQJOXfu3NH169ef2et7/fp1S6h9OvxJko2NTZKfDZsvXz7t3LlTDx48eGZv7ZUrVyz13bp1SyNHjtT27dtlMplUqFAhVahQQdKzn0sbHh6u2NhYzZs3T/PmzYu3/o033rAcO6H7ep/+fd+9e9dquO0/twkPD7csc3BwSLCeOHfu3NGWLVu0ZcuWeOviJnry9fVVbGysvvrqK8vQ23z58mngwIHy9fV97vGf9s/fVVwojhuanpC8efPq0qVLz1z/+PFj3b171+rz+ec129jYvPA8CbWjp/f5N79zAHhZhFoAwGsprgcqbjKkp12/fl1Zs2a1Wnbnzh2rf/DfuHFDtra2Vj1ZT9uyZYsyZ86sGjVqWC2PjIxMltlspSeBoVGjRtq0aZO6deumn376SWPGjLGsd3R0VOHChfX5558nuH9cz1tyqVGjhpYuXaoff/xRDRo0iLf+1q1bqlu3rlq3bq1hw4Zp4MCBOnPmjBYvXixPT0/Z29srIiJC33zzzTPPkTFjRplMJnXo0EHvvPNOvPVxoSp37twJ/m5v3rxp+WODk5OT/vrrr3jbXL9+XZLitYHncXR0VLVq1dSxY8d469Kl+79/TjVs2FANGzbUvXv3tGfPHs2bN08ff/yxypcv/8z7XZNDjRo1tGTJEl2/fj3BIL9r1y717NlTwcHBqlevXorV8W9+5wDwspgoCgDwWipSpIhy5sypTZs2WS2/cOGCfvvtN5UrV85q+fbt2y0/m81mfffddypfvvwzH3+yYsUKjRw50mpI5dWrV3Xo0CFVrlw52a6jSZMmunLlimXCoLfeesuyrlKlSrp8+bKyZ88uNzc3y+unn37S/Pnz482C+zxxPW7PU6NGDRUvXlxffPGFbt++HW/9lClTFB0drUaNGkl6MhHRW2+9pcqVK1s+x7hZfON69v5ZY6ZMmVSqVCmdOXPG6pqKFSumoKAgy72uFStW1I8//qjIyEjLvidOnLDMIhy3zd9//63Dhw9bnWPDhg2ys7OTu7v7C685TqVKlfTnn3+qZMmSlprKlCmjxYsX6/vvv5ck9e3b13K/s6Ojo95++2316NFD0dHRunbtWqLP9W/4+fnJzs5On332WbxhyA8fPtT06dOVNWtW1apVK0XrSMzvHACSGz21AIDXko2Njfr376+AgAANGDBAjRs31u3btxUcHCwnJ6d4PW6TJk1SZGSkihQpolWrViksLExLlix55vF79Oihjh07qkePHmrXrp3u3r2r4OBgZcmSRf7+/i+s77fffnvmuiJFiliGDRcvXlwlS5bUV199pbffftvqfsZmzZpp2bJl6tixo7p166Y8efLo559/1rx589SmTRvZ2dm9sI44mTNn1o0bN7Rr1y6VLFky3nBs6UmP5KRJk+Tv76/33ntP7dq1U4kSJXTr1i2FhIToxx9/1IABAyxh0d3dXRs3blTp0qWVO3duHTp0SHPnzpXJZLLcg+no6Cjpyf3Bzs7OKlu2rPr3768uXbpYfm8xMTFauHChfv/9d/Xo0UOS1K1bN23ZskWdO3eWv7+/wsPDNW3aNNnY2FiG6zZr1kxfffWVevbsqd69eyt//vz63//+pzVr1uijjz5S5syZE/359OjRQ61atVLXrl31wQcf6I033tDKlSu1fft2TZ8+XdKTe2pHjhypiRMnqlatWgoPD1dwcLAKFy6c4s/tzZ8/v0aNGqVhw4bJz89PrVq1Up48eXT+/HktWrRIFy5c0IIFCyzDt1NKYn7nAJDcCLUAgNdWs2bNlDFjRs2ZM0c9e/ZUpkyZVLNmTfXv3z/eEM1Ro0Zpzpw5unDhgkqVKqWFCxda7gVMSJUqVbRw4UIFBQWpX79+srGxUc2aNTVw4EBLUHueli1bPnPdjBkz5OPjY3nfpEkTTZgwwTJBVBwHBwctX75cU6ZM0eTJk3Xv3j3ly5dPAwYMSFSwflqzZs0sQ1R79+6tLl26JLhdyZIltXr1ai1atEhff/21rl69KgcHB7m6umr+/PlWE2dNmDBBY8eOtTzSpnDhwho9erQ2bNigAwcOSHrSM9uxY0etXLlSu3bt0k8//aQaNWpowYIFCg4OVu/evWVnZ6fSpUtr0aJFlgmvChUqpAULFmjSpEnq3bu3smfPrq5du2rWrFmW+30zZMigpUuXasqUKZo2bZru37+vokWL6rPPPkvwsT3PU6JECS1fvlxffPGFBg0aJLPZrOLFi2vGjBmWZ+22atVKjx8/1ooVK/TVV18pffr0qlq1qj7++OMk/YHh32ratKkKFSqkJUuWaOrUqbp586Zy5sypcuXKKSgoSM7OzileQ2J+5wCQ3Exm7toHAPyHhYSEKCAgQDt27Ej2e1CRcvbu3Ss7OzurPzyEh4erWrVqGjRokNq1a5eK1QEAXiV6agEAgOEcP35c06dPV//+/VW6dGnduXNHixYtkqOjoxo2bJja5QEAXiFCLQAAMBx/f39FRUXp66+/1uXLl+Xg4KBKlSpp/PjxyTb7NADAGBh+DAAAAAAwLB7pAwAAAAAwLEItAAAAAMCwCLUAAAAAAMNioiikGYcPH5bZbH4lz/IDAAAAkHY9fvxYJpNJnp6eL9yWnlqkGWaz2fICUoLZbFZUVBRtDCmC9oWURhtDSqJ9IaUltY0lJRfQU4s0w87OTlFRUXJxcZGDg0Nql4PX0MOHD3Xy5EnaGFIE7QspjTaGlET7QkpLahs7evRooo9NTy0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUIs0xmUypXQJeUyaTSRkyZKCNIUXQvpDSaGNISbQvGBnPqUWaYm9vrwwZMqR2GXhNZciQQaVKlUrtMvCaon0hpdHGkJJoX4iNiZGNrW1ql/GvEGqR5uwe31N3z/+Z2mUAAAAA/wlOBV1UK2BGapfxrxFqkebcPf+nbv15NLXLAAAAAGAA3FMLAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAADiiY2N1ddff61GjRrJ09NTdevW1bhx43T//v0Et1+yZIlcXV118eJFq+V//fWXBg0apB49eqhmzZr64IMPtHfv3mSrk1ALAAAAAIhn/vz5Gjt2rLy8vDRjxgz5+/tr/fr16tWrl8xms9W2Z8+eVWBgYLxj3L59W23atNG5c+fUrl07TZgwQTly5JC/v7/279+fLHWmS5ajvCLe3t76+++/Le9NJpMcHBxUqlQp9enTRxUrVnyp4x88eFBms1kVKlR47nZr167VqlWrFBoaKkkqVqyYOnTooPr167/U+VPDH3/8ob///lteXl6SJFdXV40fP17NmjVL3cIAAAAApJrY2FjNmzdPLVu21IABAyRJ1apVU9asWdWvXz8dO3ZMbm5ukqSYmBgFBAQoS5YsunLlitVx1q1bp9u3b2vp0qW6efOmSpYsKW9vbzVp0kQLFixQpUqVXrpWw/XU+vv7a8+ePdqzZ492796tFStWKFOmTOrcubMuXbr0Usdu3bq1zp8//8z1ZrNZffr00YQJE+Tr66sVK1Zo5cqVqlWrlvr166e5c+e+1PlTQ9euXXX06FHL+z179sjX1zcVKwIAAACQ2u7fv68mTZqoYcOGVsuLFi0qSbpw4YJl2YIFC3Tjxg116dIl3nHefPNNdejQQbly5bIss7W1VaFChZ6bvZLCUD21kuTg4KCcOXNa3ufKlUujR49WrVq19P3336t9+/Ypdu6vvvpK33//vVatWqXSpUtblnfv3l0xMTGaPn26GjZsqLx586ZYDSnt6c8WAAAAwH9T5syZNXz48HjLt2/fLklycXGR9GTkZ3BwsObPnx/vXlpJ8vX1la+vrx4+fGhZdvfuXf3666+qUqVKstRquJ7ahKRL9ySb29vbS5IePXqkqVOnqm7dunJzc1OTJk20bds2y/YhISGqV6+ePv30U5UvX149evSQq6urJCkgIEBDhgxJ8DwrVqyQl5eXVaCN0759ey1evFg5cuRIUg1x/1umTBk1a9ZMBw8etGwTERGhkSNHqnLlyipXrpyGDRumAQMGWNV36NAh+fn5yd3dXV5eXho9erTVjdtHjhxR69at5enpqYoVK6pXr16WHu244dzBwcFq27atpCfDj0NCQiz7r1u3To0bN5a7u7u8vb01c+ZMxcTESJIuXrwoV1dXbdu2Te+//77KlCkjb29vrVy58oW/MwAAAADG8vvvv2vu3LmqU6eOihcvrujoaA0ePFjvv/9+oocRx8bGasSIEbp//746d+6cLHUZPtRevXpVY8aMkYODg2rXri1J6t+/v9atW6cRI0Zow4YN8vHxUZ8+fSx/VZCk8+fP69q1a1q3bp369eunPXv2SJKGDh2qYcOGxTtPZGSkQkNDVa5cuQTrcHR0VIUKFSzBOjE1XL58WStWrNDkyZO1du1aZciQQUOGDLHcdD148GD99NNP+uKLL7RixQrdu3dPmzdvtux/6tQpdezYUTVr1tSGDRv0+eef6/jx4/L395fZbFZMTIy6du2qihUrasOGDVq8eLEuXbqkoUOHSpJWr16t3Llzy9/fX0FBQfGuafHixRoxYoRatmypDRs2qE+fPlqwYIEmTJhgtd348ePVrVs3bd26VV5eXho1apTVcAQAAAAAxnbw4EF17txZ+fPn1/jx4yVJs2fPVnh4uOWe2xeJjo7W8OHDtW3bNg0bNkzu7u7JUpvhhh/PmTNHCxculPTkQ4mKipKzs7OmTp2qvHnzKiwsTDt27NDs2bMtkx/16tVLp06d0uzZs+Xj42M5Vo8ePVSgQAGr4zs6OsrR0THeee/evStJcnJyemGNia3h8ePHGj16tEqWLClJ6tixo3r27Knr168rMjJS27Zt0/z581WtWjVJ0uTJk3Xo0CHLeRYsWKDq1aurW7dukqTChQtrypQp8vHx0f79+1WiRAndvn1buXLlUr58+VSgQAFNnTpVN2/elCRly5ZNtra2cnBwUJYsWayuwWw2a968eWrTpo38/Pwsx79z544mT56s3r17W7bt0KGD6tatK0nq16+fli9frt9//z3eZwsAAADAeLZs2aIhQ4aocOHCmj9/vrJmzaoTJ05o9uzZmjdvnuzt7RUdHa3Y2FhJT3pjY2JiZGtraznGvXv3NGHCBJ06dUojRoywZIzkYLhQ26pVK8tQWRsbG2XJksUqhJ4+fVqSVL58eav9KlasGG+K6cKFCyf6vFmyZJHJZNLt27dfuG1SanB2drb8HHcdjx8/1okTJyRJnp6elvVvvPGG1V8zTpw4ob/++stqmzhhYWGqXLmyOnfurLFjx2r69OmqUqWKateurbfffvuF13Dr1i3duHEj3jVUqlRJjx8/1pkzZ5Q9e/bnXgMAAAAAY1uwYIEmT56sSpUqacaMGZZ/7+/YsUOPHz9Whw4d4u1Tr149VapUSUuXLpUkXblyRR06dNDFixc1YcIENWnSJFlrNFyodXJyUqFChZK8n9lsttx7Gyd9+vSJ3t/e3l5lypSx6il9Wnh4uD766CN99NFHSaohbrjyP7eL+6tG3F87EhIbG6tGjRpZemqfli1bNknSwIED1bp1a+3atUt79+7V2LFjNX/+fK1bty7Bcz9dw7POKcnqOp51DQAAAACMa8WKFZo0aZJ8fX01ceJEq3/3t2jRwjIqNc7OnTsVHBysWbNmWToQ79+/r/bt2+vGjRsKCAhQvXr1kr1Ow99T+09xEz49PeGSJB04cMAyQ9e/1aJFC+3evVvHjx+Pt+7LL7/UgQMHlD9//mSpwdXVVSaTSb/99ptlWVRUlNW5ixUrpj///FOFChWyvKKjozV+/HhdvnxZZ86c0ciRI5U9e3Z98MEHmj59uubPn6+wsDCdOnXquefPkSOHcuTIkeA12NnZqWDBgom6DgAAAADGc/36dY0fP1758uWTn5+fTpw4od9++83ysrOzk5ubm9UrX758kqTixYtbHv0zffp0nTt3Tm3atJGtra2OHDliOUbc6NSXZbie2hdxdnZWnTp1NHr0aJlMJhUqVEibN2/Wjh07NHXq1Ofu6+DgoLCwMN2+fVtZs2aNt7558+basWOHOnbsqD59+qh69ep69OiRNmzYoEWLFmnw4MGWx/n82xriFChQQG+//bbGjh2rMWPGKGfOnJozZ46uXLkik8kk6ckze/38/DR69Gi1adNG4eHhGj16tB49eqTChQvrwYMH2rx5sx49eqQuXbrIxsZGa9eulZOTk6WRZcyYUefOndONGzcsMzfH6dSpk7744gsVKFBA1atX15EjRxQcHKyWLVvK0dHRcp8xAAAAgNfLrl279OjRI/39998J3v86fvx4NWvW7IXH+e677yQ9mVTqn/Lly6f//e9/L13raxdqJSkwMFCBgYEaNmyYwsPDVbx4cQUFBb2wq9vf39/Sk5nQh25jY6MZM2Zo2bJlWrVqlaZMmaJ06dKpWLFiCg4OtkyW9DI1PG3s2LH69NNP1atXL5nNZjVq1Eienp6ys7OTJHl4eGj+/PmaNm2amjZtKgcHB1WtWlWDBw+Wvb297O3tNW/ePE2ZMkUtWrRQTEyMPDw8tGjRImXKlEmS1LZtW02cOFF//PGHNmzYEO/zsLe315IlSzRu3Djlzp1bH374oTp16pToawAAAABgPM2bN1fz5s2TtE+zZs3iBd2dO3dKkh4+fKiTJ0+qZMmScnBwSK4yJUkmMzc/pkmRkZH68ccfVaVKFUsAlaT69eurcePG6tmzZypWlzKOHj0qSTo3c6Bu/Xk0lasBAAAA/huyubip0axtKXqOpIbauGzg5ub2wm1fy57a14G9vb1Gjx6tSpUqqUePHrK1tdXq1at16dIlNWjQILXLAwAAAIA04bWbKOp1YTKZNHfuXN2+fVstW7ZU06ZNdfjwYS1cuNDqEToAAAAA8F9GT20aVrJkSS1cuDC1ywAAAACANIueWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGlS61CwD+yamgS2qXAAAAAPxnGP3f34RapDm1AmakdgkAAADAf0psTIxsbG1Tu4x/heHHSFOioqIUERGR2mXgNRUREaETJ07QxpAiaF9IabQxpCTaF4waaCVCLdIgs9mc2iXgNWU2mxUREUEbQ4qgfSGl0caQkmhfMDJCLQAAAADAsAi1AAAAAADDItQCAAAAAAyLUAsAAAAAMCxCLQAAAADAsAi1AAAAAADDItQCAAAAAAyLUAsAAAAAMCxCLQAAAADAsAi1AAAAAADDItQCAAAAAAyLUAsAAAAAMCxCLQAAAADAsAi1AAAAAADDItQCAAAAAAyLUIs0x2QypXYJeE2ZTCZlyJCBNoYUQfsCACB1pEvtAoCn2dvbK0OGDKldBl5TGTJkUKlSpVK7DLymXpf2ZY6NkcnGNrXLAAAg0Qi1SHPOzR+kR1fCUrsMAPjPSZ/bWYU7T0rtMgAASBJCLdKcR1fCFHH+ZGqXAQAAAMAAuKcWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAiXblyhVVqFBB+/btS9K6q1evasCAAapcubLKlSunDh066MSJE6+iZADAa45QCwAAEuXy5cvy9/fXvXv3krTu/v378vPz08mTJzV69GhNmTJFDx48UMeOHXXt2rVXUToA4DWWLrULSEu8vb31999/W96bTCY5ODioVKlS6tOnjypWrPhSxz948KDMZrMqVKjw3O3Wrl2rVatWKTQ0VJJUrFgxdejQQfXr17eqtWnTpurVq9dL1QQAwIvExsZq3bp1mjhxYpLWxVmyZInu3LmjLVu2KFeuXJKkMmXKqFmzZtq/f78aNmyYYrUDAF5/9NT+g7+/v/bs2aM9e/Zo9+7dWrFihTJlyqTOnTvr0qVLL3Xs1q1b6/z5889cbzab1adPH02YMEG+vr5asWKFVq5cqVq1aqlfv36aO3fuS50fAIB/4/Tp0xo5cqTeffddTZo0KdHr4mzbtk3169e3BFpJypkzp3788UcCLQDgpdFT+w8ODg7KmTOn5X2uXLk0evRo1apVS99//73at2+fYuf+6quv9P3332vVqlUqXbq0ZXn37t0VExOj6dOnq2HDhsqbN2+K1QAAwD/lyZNH33//vXLnzh3vftnnrZOkx48fKywsTI0bN9bUqVO1evVq3b59W+XKldMnn3yiYsWKvarLAAC8puipTYR06Z5kf3t7e0nSo0ePNHXqVNWtW1dubm5q0qSJtm3bZtk+JCRE9erV06effqry5curR48ecnV1lSQFBARoyJAhCZ5nxYoV8vLysgq0cdq3b6/FixcrR44cCe57+PBhtWvXTuXLl1flypUVEBCg27dvW9YfOXJErVu3lqenpypWrKhevXpZep4vXrwoV1dXq3+M/HPZkCFD1Lt3b/n7+6tcuXKaN2+eJOmHH35Qs2bN5O7urnr16mnq1KmKiopK3AcLADCELFmyKHfu3EleJ0nh4eGKjo7W4sWLtW/fPn366af64osvdPv2bbVp00ZXr15NqbIBAP8RhNoXuHr1qsaMGSMHBwfVrl1bktS/f3+tW7dOI0aM0IYNG+Tj46M+ffpo+/btlv3Onz+va9euad26derXr5/27NkjSRo6dKiGDRsW7zyRkZEKDQ1VuXLlEqzD0dFRFSpUsATrpx05ckRt27ZVsWLF9M0332jatGn6/fff1alTJ8XExCgmJkZdu3ZVxYoVtWHDBi1evFiXLl3S0KFDk/RZbNu2TdWqVdOaNWvUsGFD7d69W3379lWLFi20adMmjRw5Ulu3btXHH3+cpOMCAF5fjx8/tvw8f/58eXl56a233tLcuXP14MEDLV++PBWrAwC8Dhh+/A9z5szRwoULJUnR0dGKioqSs7Ozpk6dqrx58yosLEw7duzQ7Nmz5eXlJUnq1auXTp06pdmzZ8vHx8dyrB49eqhAgQJWx3d0dJSjo2O88969e1eS5OTklOSaFy5cKFdXV40YMUKS5OzsrMDAQDVp0kR79uyRh4eHbt++rVy5cilfvnwqUKCApk6dqps3bybpPE5OTurcubPl/YABA9SiRQu1atVKklSwYEGNHj1a7du318WLF5U/f/4kXwsA4PWSMWNGSVLlypUtP0tS3rx55ezszGN9AAAvjVD7D61atVLbtm0lSTY2NsqSJYtVCD19+rQkqXz58lb7VaxYUYGBgVbLChcunOjzZsmSRSaTyWrIcGKFhoaqevXqVstKlCghR0dHnT59WrVr11bnzp01duxYTZ8+XVWqVFHt2rX19ttvJ+k8hQoVsnp/4sQJHTlyRKtXr7YsM5vNkqSwsDBCLQBAjo6OypYtW4K3pkRHRyt9+vSpUBUA4HVCqP0HJyeneOEtMcxms+Xe2zhJ+T9qe3t7lSlTRocOHUpwfXh4uD766CN99NFHqlSpUrxzP6smOzs7SdLAgQPVunVr7dq1S3v37tXYsWM1f/58rVu3LsF9Y2Ji4i375/XExsaqc+fOatq0abxtn55sCwDw31a7dm19//33unXrlrJlyyZJOnPmjM6ePav3338/lasDABgd99QmUdyETwcPHrRafuDAAbm4uLzUsVu0aKHdu3fr+PHj8dZ9+eWXOnDgQIK9n66urvHqOXXqlO7fvy9nZ2edOXNGI0eOVPbs2fXBBx9o+vTpmj9/vsLCwnTq1ClL8L1//75l/3Pnzr2w3mLFiuns2bMqVKiQ5XXlyhVNmjRJDx48SOLVAwBeVz179pTJZFKnTp20fft2bdmyRd26dVPu3LnVvHnz1C4PAGBw9NQmkbOzs+rUqaPRo0fLZDKpUKFC2rx5s3bs2KGpU6c+d18HBweFhYXp9u3bypo1a7z1zZs3144dO9SxY0f16dNH1atX16NHj7RhwwYtWrRIgwcPTvBxPh07dlTr1q01duxYtW7dWjdu3NDYsWNVqlQpVa1aVffv39fmzZv16NEjdenSRTY2Nlq7dq2cnJxUtGhRZcyYUfny5dOSJUtUuHBh3blzR9OmTZPJZHru9Xz44Yfq27evgoOD9c477+jKlSsaNmyY8ufPT08tAMCiQIECWrFihT7//HN9/PHHsrW1VbVq1TR06FBlypQptcsDABgcofZfCAwMVGBgoIYNG6bw8HAVL15cQUFBqlev3nP38/f3t/SQzp49O956GxsbzZgxQ8uWLdOqVas0ZcoUpUuXTsWKFVNwcLDq1q2b4HHLli2r+fPna+rUqXr33XeVKVMm+fj4aMCAAbKzs1PWrFk1b948TZkyRS1atFBMTIw8PDy0aNEiyz8mJk2apHHjxqlJkyYqVKiQAgIC1KVLl+deT4MGDfTFF19ozpw5mj17trJkySJvb28NHDgwkZ8kAMBoKleubJlfIinrXFxcEvz/PgAAXpbJ/KwbMoFX7OjRo5Iku/WjFHH+ZCpXAwD/PRkKllSJ4WtSuww8w8OHD3Xy5EmVLFlSDg4OqV0OXjO0L6S0pLaxuGzg5ub2wm25pxYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFjpkrrDnDlz9O677+rNN99MiXoApc/tnNolAMB/Et+/AAAjSnKonTdvnqZPn66qVauqWbNm8vHxkb29fUrUhv+owp0npXYJAPCfZY6NkcnGNrXLAAAg0ZI8/HjPnj0aP368zGazBg4cqJo1a2r06NE6cuRIStSH/5ioqChFRESkdhl4TUVEROjEiRO0MaSI16V9EWgBAEaT5J7a9OnTq3HjxmrcuLGuXLmi9evX69tvv9WKFSvk4uKiZs2aqUmTJsqWLVtK1Iv/ALPZnNol4DVlNpsVERFBG0OKoH0BAJA6XmqiqNy5c6tjx47q0aOHKlSooD/++EOTJk2Sl5eXRo0apfv37ydXnQAAAAAAxJPknto4+/fv1/r167Vt2zY9fPhQVapUUWBgoGrVqqXdu3drzJgxunTpkubOnZuc9QIAAAAAYJHkUPvFF19o48aNunz5svLkyaMOHTqoWbNmyps3r2UbX19fnT59Wl9++WWyFgsAAAAAwNOSHGoXLVokHx8fjR07VtWqVZPJZEpwOzc3N/Xt2/dl6wMAAAAA4JmSHGq7du2qBg0ayNn5+c+y8/Hx+ddFAQAAAACQGEmeKGrevHm6ePFiStQCAAAAAECSJDnUOjs76+zZsylRCwAAAAAASZLk4cd16tRRYGCgfvzxR7m6usrBwcFqvclkUs+ePZOtQAAAAAAAniXJoTY4OFiS9NNPP+mnn36Kt55QCwAAAAB4VZIcak+dOpUSdQAAAAAAkGRJDrVPCwsL071795QtWzYVLFgwuWoCAAAAACBR/lWo3bRpkyZOnKgbN25YluXIkUMDBgzQu+++m1y1AQAAAADwXEkOtf/73//08ccfq0qVKurfv79y5Miha9euacOGDQoICFCWLFnk5eWVAqUCAAAAAGAtyaF21qxZatCggb744gur5e+995769eunOXPmEGoBAAAAAK9Ekp9TGxoaqqZNmya4rmnTpkwkhZdmMplSuwS8pkwmkzJkyEAbAwAAeI0kuac2a9asunv3boLr7ty5I3t7+5cuCv9d9vb2ypAhQ2qXgddUhgwZVKpUqdQuAwZijo2VySbJf/8FAACvUJJDbdWqVRUcHKyKFSsqd+7cluWXL1/WjBkzVL169WQtEP89t7dNV/Stv1O7DAD/cemy5VPW+r1TuwwAAPACSQ61/fv313vvvae33npLnp6eypEjh27cuKHDhw/LyclJAwYMSIk68R8SfetvPb5+NrXLAAAAAGAASR5TlTNnTq1du1Zt27ZVRESEjh07poiICLVt21Zr165Vvnz5UqJOAAAAAADi+VfPqc2ePbs+/vjj5K4FAAAAAIAkSXKoDQ4OfuY6GxsbOTg4qFChQqpevTqTRgEAAAAAUlSSQ+2GDRt05coVRUVFKV26dMqSJYvu3Lmj6OhomUwmmc1mSZKLi4u+/PJLZcuWLdmLBgAAAABA+hf31Pbp00f29vYKDAzUkSNHtGfPHh09elTBwcHKmjWrpk6dqo0bN8pkMikwMDAlagYAAAAAQNK/CLVBQUHq27evfH19ZfP/n91nMpnk4+Oj3r17a9q0aSpWrJi6deumXbt2JXvBAAAAAADESXKovXz5sgoVKpTgunz58unvv588X/TNN9/U3bt3X646AAAAAACeI8mh1sXFRatWrUpw3erVq1WkSBFJ0rlz55QrV66Xqw4AAAAAgOdI8kRRvXr1Us+ePdW0aVO99dZbyp49u27cuKHt27fr9OnTmj59uk6cOKHJkyfrvffeS4maAQAAAACQ9C9CrZeXlxYsWKCgoCAFBwcrJiZG6dKlU/ny5bVkyRJVqFBB//vf//TOO++ob9++KVAyAAAAAABPJDnUSlKVKlVUpUoVRUVF6e7du8qePbtl0ihJ8vb2lre3d7IVCQAAAABAQv5VqJWkXbt26eeff9b169fVr18/nTx5UqVLl1a+fPmSsz4AAAAAAJ4pyaE2IiJCPXv21M8//6xMmTLpwYMH6tSpk77++mudOHFCy5YtU7FixVKiVgAAAAAArCR59uPAwEAdP35cixcv1i+//CKz2SxJmjhxot58801NmzYt2YsEAAAAACAhSQ61W7duVf/+/VWlShWZTCbL8ly5cql79+46ePBgshYIAAAAAMCzJDnUhoeHP/O+WScnJz18+PCliwIAAAAAIDGSHGqLFSumjRs3Jrjuf//7H/fTAgAAAABemSRPFNW9e3d99NFHunPnjurUqSOTyaRff/1VISEhWrFihaZMmZISdQIAAAAAEE+SQ62Pj48mT56sKVOmaNeuXZKkCRMmKHv27Bo1apQaNGiQ7EUCAAAAAJCQf/Wc2kaNGqlRo0Y6c+aM7ty5o8yZM6to0aKysUnyaGYAAAAAAP61JKfQdu3aKSwsTJJUtGhRlStXTi4uLrKxsdGpU6fUqFGjZC8SAAAAAICEJKqn9sCBA5bn0e7fv1+//vqrbt26FW+7H374QRcuXEjeCgEAAAAAeIZEhdpVq1Zp/fr1MplMMplMGj16dLxt4kJvw4YNk7dCAAAAAACeIVGhdvjw4XrvvfdkNpvVvn17ffLJJ3JxcbHaxsbGRpkzZ+aRPgAAAACAVyZRodbR0VGVKlWSJH355ZcqVaqUMmXKlKKFAQAAAADwIkme/bhSpUq6evWqdu/eraioKMvy2NhYRURE6MCBA/riiy+StUgAAAAAABKS5FD77bffauDAgYqOjpbJZJL05H7auJ+LFi2avBUCAAAAAPAMSX6kz+zZs1W6dGmFhISoWbNmatKkiTZv3qyPP/5Ytra2Gjp0aErUCQBAmhAbG6sFCxaoXr16cnNz09tvv61ly5ZZbRMeHq5Ro0apevXq8vT0VMuWLbV3795UqhgAgNdbkntqz549qylTpqhUqVKqXLmyFi5cKGdnZzk7O+vGjRuaPXu2qlevnhK1AgCQ6iZMmKAlS5aoVatWqlevns6fP69p06bp7Nmz8vX1VUxMjD788ENdunRJH3/8sbJnz64vv/xSXbp00apVq1SiRInUvgQAAF4rSQ61NjY2cnJykiQVKlRIZ86cUWxsrGxsbFSrVi2tXbs22YtMLG9vb/3999+W9yaTSQ4ODipVqpT69OmjihUrvtTxDx48KLPZrAoVKiS4vm3bttq/f7/lfbp06ZQ1a1ZVqVJFffv2Vf78+a1qbdq0qXr16vVSNb2Mx48fa/ny5erQoYMkKSgoSGvXrtX//ve/VKsJANKyW7duadmyZXr//fetHm+XJ08e9ejRQ2XLllVYWJiOHTumkJAQubq6SnoyH0Xjxo31008/EWoBAEhmSR5+XLRoUR06dMjyc1RUlE6dOiXpyXCrpyePSg3+/v7as2eP9uzZo927d2vFihXKlCmTOnfurEuXLr3UsVu3bq3z588/d5u3337bcv5t27Zp8uTJOn/+vFq1amV1/tWrV8vf3/+l6nlZmzZt0vjx4y3v/f39tXr16lSsCADStnPnzikmJkZ16tSxWl65cmXFxsbqyJEj2r59uypWrGgJtJL0xhtvaNu2berUqdOrLhkAgNdekkNtq1atNG3aNH3xxRdydHRUlSpVFBAQoKVLl2rKlCkqXbp0StSZaA4ODsqZM6dy5sypXLlyqXjx4ho9erQePXqk77//PsXPnz59esv58+fPr6pVq2rBggWytbVVYGCgZbts2bIpY8aMKV7P85jNZqv3GTNmVLZs2VKpGgBI+7JmzSpJ8f5IGvcHz2vXrun06dNycXHR4sWL5e3trdKlS6tZs2Y6cODAK68XAID/giSH2vfff1/Dhg2z9MiOHTtWkZGR+uyzzxQdHa1hw4Yle5EvK126J6Os7e3tJUmPHj3S1KlTVbduXbm5ualJkybatm2bZfuQkBDVq1dPn376qcqXL68ePXpY/uIeEBCgIUOGJOn8jo6Oatasmb7//nvL5+bt7a2goCBJUkREhIYNG6bq1avLzc1N7777rr777jvL/m3bttWIESP0/vvvq0KFCtqwYYOGDBmitm3bWp3n6WUXL16Uq6ur1q1bp4YNG8rd3V0tWrTQwYMHLdcYEBAgSXJ1ddW+ffsUFBQkb29vy/EuX76sgQMHqnr16vLw8FCnTp0svfJx5xsyZIgmTpyoqlWrqmzZsuratauuXr2apM8HAIyiSJEiKl++vIKCgvT999/r3r17OnHihIYNGyZ7e3tFRkbqzp07+vbbb7Vq1SoNGjRIM2fOVIYMGeTv72/1HQoAAJJHkkOtJPn5+Wnw4MGSpAIFCmjr1q36+eeftWPHDqvhVmnB1atXNWbMGDk4OKh27dqSpP79+2vdunUaMWKENmzYIB8fH/Xp00fbt2+37Hf+/Hldu3ZN69atU79+/bRnzx5J0tChQ/9VcC9evLgePXqkc+fOxVs3bdo0nT59WnPnztWWLVtUq1Yt9evXTxcvXrRss2rVKrVr105fffWVatasmejzTpgwQd26ddPatWtVtGhR+fv768KFC/L19bXMVL1nzx55enpa7Xf//n198MEHunr1qmbNmqUVK1Yoffr0atOmjdV9y5s2bdKdO3e0bNkyzZs3T8ePH9fUqVOT9uEAgIFMnz5dFSpU0EcffaQKFSqoffv2atmypZycnGRvb6/Hjx/r3r17WrBggRo0aKDatWtrzpw5ypgxo+bNm5fa5QMA8NpJ0kRRt27d0v3791WwYEGr5UuXLpWvr2+yFvZvzZkzRwsXLpQkRUdHKyoqSs7Ozpo6dary5s2rsLAw7dixQ7Nnz5aXl5ckqVevXjp16pRmz54tHx8fy7F69OihAgUKWB3f0dFRjo6OSa4rc+bMkqR79+7FW3f+/HllzJhRBQoUUObMmS2TWsVNyCVJJUuWVKNGjZJ83i5duqhhw4aSnvSq//LLL/rmm280YMAAy3XkzJkz3n4bNmzQ7du3FRISYhmSPGXKFPn4+Gj58uUaNGiQpCefx5gxY2RnZydnZ2f5+vpq165dSa4TAIwiR44cmjlzpsLDw3Xt2jUVLFhQNjY2GjlypDJlyiQHBwe5uLgod+7cln0yZcokT09PnThxIhUrBwDg9ZTontp169bJ29tbK1assFp+5coVjRs3Tt7e3tq6dWuyF5hUrVq10rp167Ru3Tpt2bJFBw4c0JYtWyy9tKdPn5YklS9f3mq/ihUrKjQ01GpZ4cKFk62uuDAbF26f9uGHH+rUqVOqWrWqPvjgA82aNUsFCxa0Cs+FChX6V+etXLmy5Wc7OzuVKVMm3nUmJDQ0VIULF7a6xzZ9+vRyd3e32r9gwYKys7OzvHd0dNTjx4//Va0AYASbN2/WqVOnlDlzZrm4uMje3l4nT55UbGysChcurIIFCyY4aWJ0dLTSp0+fChUDAPB6S1SoPXjwoIYOHaqKFSuqSZMmVuty586ttWvXqmLFihowYICOHj2aIoUmlpOTkwoVKqRChQqpQIECie5VNZvNlntv4yTnPz6OHz8uBweHBIOyp6endu3apenTp6t06dJat26dfH19tXfv3iTVEh0dHW/ZP68pJiZGNjYv/rX/cxKpOLGxsVbHjLtPGQD+K2bNmqW5c+daLVu8eLEyZcqkUqVKqUaNGjp58qTCwsIs62/fvq1Dhw7F+4MqAAB4eYkKtfPmzVOVKlU0b968BO+ZLVmypObNm6cyZcpozpw5yV5kcoqrP27CpDgHDhyQi4tLipzz/v37WrdunRo0aGDVqxln+vTpOnjwoOrWravhw4dr27ZtKlCggNXkVf9kZ2en+/fvWy3766+/4m339B8ZoqKidPz4ccsM1SaT6ZnHd3V11blz53Tz5k3LssjISB07dizFPicAMIK2bdtqy5YtmjVrln755Rd98skn2rRpk3r37i0HBwe1bt1auXPnVpcuXbRp0ybt2LFDH374oUwmE4/0AQAgBSQq1B4/flwtW7Z8/oFsbOTn56djx44lS2EpxdnZWXXq1NHo0aO1c+dOnT17VsHBwdqxY8cLnxvr4OCgsLAw3b59+5nbPHr0SNevX9f169d16dIl7dmzR126dJHZbFbfvn0T3OfChQsaOXKk9u7dq7///lvbtm3TpUuX4k3e9DQPDw+dOnVKGzZs0IULFzRjxowEhxVPnTpVO3fu1J9//qmhQ4cqIiJCLVq0sFyPJB07dkyPHj2y2q9Ro0bKkiWL+vbtqyNHjujUqVMaOHCgHj58+MK2AACvs5YtWyogIEAhISHq1q2bjh49qilTpuj999+X9OQ2k6+//loeHh4aM2aMBg4cKCcnJ3311VfKkydPKlcPAMDrJ1ETRd27d09ZsmR54XZ58uTRnTt3XrKklBcYGKjAwEANGzZM4eHhKl68uIKCglSvXr3n7ufv76/58+crLCxMs2fPTnCbrVu3Wu4tTpcunXLmzCkfHx8FBgbqzTffTHCfkSNHauLEifr44491584d5cuXTwMHDow31PtpjRs31smTJ/Xpp58qOjpab7/9ttq3b6/Dhw9bbffBBx9o4sSJunTpksqWLaulS5cqV65ckqQqVaqobNmyatWqlSZPnmy1n6Ojo5YtW6YJEyaoQ4cOkp7ch/z111/HmzwLAP5r2rdvr/bt21ste/jwoeXn3Llza8qUKa+6LAAA/pNM5mfdPPmUuMDUqlWr5273zTffaO7cuVaPxkHquHjxourWrasvv/zSarKotCxuqHTuY8v0+PrZVK4GwH+dXc4iyvnBxERv//DhQ508eVIlS5a0jIQBkhNtDCmJ9oWUltQ2FpcN3NzcXrhtooYf16lTR0uXLk1wNsc4kZGRWrp0qWECFAAAAADA+BIVajt06KBbt26pQ4cOCd4ze/z4cXXq1EkXL1584X2pAAAAAAAkl0TdU5srVy4FBwerX79+ev/995U9e3blz59fMTExunz5sm7evKns2bMrODhYzs7OKV0zEiF//vyWZ/ICAAAAwOsqUaFWejJJ0MaNG7V27Vrt2bNHV65cka2trdzc3FSjRg01adJEmTJlSslaAQAAAACwkuhQK0lOTk7q0KGDZTZcAAAAAABSU6LuqQUAAAAAIC0i1AIAAAAADItQCwAAAAAwLEItAAAAAMCwkhxqf/31Vz148CDBdeHh4dq8efNLFwUAAAAAQGIkOdS2a9dOYWFhCa47ceKEAgICXrooAAAAAAASI1GP9Bk8eLAuX74sSTKbzRo1alSCz6Q9d+6ccuTIkbwVAgAAAADwDInqqa1fv77MZrPMZrNlWdz7uJeNjY08PDw0fvz4FCsWAAAAAICnJaqn1tvbW97e3pKktm3batSoUXJ2dk7RwgAAAAAAeJFEhdqnLV26NCXqAAAAAAAgyZIcah89eqRZs2bphx9+UEREhGJjY63Wm0wmbd++PdkKBAAAAADgWZIcaj/77DOtXr1alSpVUsmSJWVjw6NuAQAAAACpI8mh9rvvvlO/fv3UpUuXlKgHAAAAAIBES3I36+PHj+Xu7p4StQAAAAAAkCRJDrU1atTQ7t27U6IWAAAAAACSJMnDj319fTVy5EjdunVLZcuWVYYMGeJt8+677yZHbQAAAAAAPFeSQ23fvn0lSevWrdO6devirTeZTIRaAAAAAMArkeRQu2PHjpSoAwAAAACAJEtyqM2XL5/V+8jISNnb28tkMiVbUQAAAAAAJEaSQ60knTlzRtOnT9fPP/+s+/fva9WqVVq9erWKFi2qtm3bJneNAAAAAAAkKMmzH588eVLNmzfX8ePH1ahRI5nNZkmSra2txo0bp7Vr1yZ7kQAAAAAAJCTJPbUTJ05UmTJltHDhQknS8uXLJUnDhw9XZGSkvvzySzVt2jR5qwQAAAAAIAFJ7qn97bff1KFDB6VLly7efbS+vr46d+5cctUGAAAAAMBzJTnUvvHGG3r06FGC6+7cuSN7e/uXLgoAAAAAgMRI8vDj6tWra/r06SpXrpxy5swp6cmzaR88eKCFCxeqWrVqyV4k/lvSZcv34o0AIIXxXQQAgDEkOdR+/PHHatmypRo0aKASJUrIZDJpwoQJOnv2rMxmswIDA1OiTvyHZK3fO7VLAABJkjk2ViabJA9qAgAAr1CS/586T548Wr9+vdq3by+z2ayCBQvq4cOHatiwoUJCQlSgQIGUqBP/EVFRUYqIiEjtMvCaioiI0IkTJ2hjSDQCLQAAaV+Se2pv3bqlbNmyqV+/filRD2B5TBSQ3MxmsyIiImhjAAAAr5Ek/wm6Vq1a6t69u7799ltFRUWlRE0AAAAAACRKkkPtwIEDdfPmTfXt21fVq1fX8OHDdeDAgZSoDQAAAACA50ry8OMOHTqoQ4cOunDhgjZt2qQtW7Zo9erVyps3rxo3bqxGjRrJ2dk5JWoFAAAAAMDKv54Bo0CBAurevbs2btyojRs3ysvLS/PmzVPDhg2Tsz4AAAAAAJ4pyT21T7t586a2bt2qrVu36vDhw8qSJYt8fX2TqzYAAAAAAJ4ryaH23r172rZtmzZv3qxff/1Vtra28vb21syZM1WzZk3Z2tqmRJ0AAAAAAMST5FBbtWpVxcbGqnz58ho1apQaNGigTJkypURtAAAAAAA8V5JDba9evdSoUSPlzZs3JeoBAAAAACDRkjxRVNeuXZ8ZaB89eqRTp069dFEAAAAAACRGokJtjRo1dPLkSatlixYt0q1bt6yWnT59Wk2bNk2+6gAAAAAAeI5EhdobN27o8ePHlvcxMTGaNGmSLl++nGKFAQAAAADwIv/6ObVmszk56wAAAAAAIMn+dagFAAAAACC1EWoBAAAAAIZFqAUAAAAAGNZLhVqTyZRcdQAWtCukFJPJpAwZMtDGAAAAXiPpErthz549ZW9vb7WsW7dusrOzs7yPiopKvsrwn2Rvb68MGTKkdhl4TWXIkEGlSpVK7TJSldkcK5OJQToAAOD1kahQy7Nn8SrdP7pFMQ9uvXhDAElimzGbMrn5pnYZAAAAySpRoXb8+PEpXQdgEfPglmLuXUvtMgAAAAAYAGPQAAAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABhWutQuAACQOvbt26d27do9c32vXr300UcfWd5HR0erdevWqlmzpnr16vUqSgQAAHghQi0A/EeVLl1aK1eujLd86tSpOnr0qN555x3LssjISA0aNEi///67atas+SrLBAAAeK5UH37s7e0tV1dXLVq0KMH1n3zyiVxdXRUUFPRS52nbtq2GDBlief/DDz/ozz//lPSkt8LV1VUXL158qXP8G998841cXV01bty4RG2flFovXrwoV1dX7du372XLBPAaypQpkzw8PKxeN2/e1N69e/XZZ5+pSJEikqQDBw7o/fff1y+//JLKFQMAAMSX6qFWkuzs7LRt27Z4y6Ojo/Xdd9/JZDK99DmCgoI0bNgwSdLff/+tbt266ebNm5IkT09P7dmzR3ny5Hnp8yRVSEiIihQponXr1ikyMjJZj50nTx7t2bNHnp6eyXpcAK+nR48e6dNPP5WXl5caNGhgWd69e3flzZtXISEhqVgdAABAwtJEqK1atap+++03XblyxWr5L7/8IgcHh2QJm1myZJGjo6MkyWw2W62zt7dXzpw5ZWtr+9LnSYqwsDAdPnxYAwcOVHh4uLZu3Zqsx7e1tVXOnDllb2+frMcF8Hr68ssvdfXqVQ0dOtRq+bJlyzR79mzly5cvlSoDAAB4tjQRat3d3ZU3b159++23Vsu3bNmit99+O15P7apVq9SoUSO5u7vLw8NDrVu31tGjRy3rvb29NXHiRPn6+qpy5crav3+/ZfjxxYsXVbduXUlSu3btFBQUFG9Ir7e3t+bOnasuXbqobNmy8vb21vbt27V9+3bVr19fHh4e6tSpk6WnV3oSUD/88EN5enqqRo0aGjBggK5fv/7c6w4JCZGTk5Pq1KmjcuXKacWKFfG2iRv25+7ursaNG+vUqVNW+7u5uSk8PNxqHx8fH33xxRfxhh+fO3dOnTp1Uvny5eXp6alOnTrp9OnTlv3u3Lmj0aNHq3bt2nJ3d1erVq2shi4HBQWpTZs26tevn8qVK6eRI0eqatWqCg4Otjr/ihUrVKNGDUVHRz/3+gGkHVFRUfryyy/l6+urQoUKWa1zdXVNpaoAAABeLE2EWkl6++23rUJtVFSUtm/fbjVRiSR9//33GjNmjDp37qytW7dq8eLFioyM1PDhw622W7ZsmYYPH6758+fLw8PDsjxPnjxatWqVpCchzd/fP8F6Zs6cKV9fX23cuFElSpTQoEGDNHv2bE2ePFmzZ8/W0aNHNW/ePEnS1atX1bp1axUqVEirV6/W7Nmzdf/+fbVs2VIPHz5M8PgxMTFav369fHx8ZGtrK19fXx0+fNgqtF64cEH+/v4qWbKk1q5dq549e2rmzJmW9Q0aNFC6dOmshm4fOnRIFy5cULNmzeKds3///nrzzTe1Zs0arVq1SjY2NpaZTWNiYuTv768DBw5o8uTJCgkJUfHixdWpUycdOXLEcoxff/1VOXLk0Pr169WxY0c1btxYGzZssDrPunXr1LhxY6VLxzxkgFFs27ZN169fV+fOnVO7FAAAgCRJU6H2t99+09WrVyVJP/30k7Jly6ZSpUpZbZclSxZ99tlnatKkifLlyycPDw81b95coaGhVtvVrl1b1apVk5ubm9XwW1tbW2XLlk2S5OTkpIwZMyZYj5eXl959910VLFhQLVq00IMHD9SvXz+5u7urSpUqqlatmv744w9J0tdff63cuXNr+PDhcnZ2VpkyZTR16lTdvHkzXu9znN27d+v69euW0N6gQQPZ2tpazUT6zTffKEeOHBo5cqScnZ1Vv359de/e3bLewcFBDRo00MaNGy3LNm7cqHLlysXraZGk8+fPK1u2bMqXL59cXFw0btw4ffrpp4qNjdWePXt0/PhxTZkyRZUqVZKLi4tGjx6tYsWKacGCBVbH6d27twoUKKDChQvrvffe019//aXDhw9Lks6ePavDhw8nGKoBpF3btm1TsWLFVKJEidQuBQAAIEnSTKgtU6aMChQoYOl13LJlS7xeWkmqWLGiSpcurRkzZmjAgAFq3ry5xo0bp9jYWKvtEgp1SfH0/hkyZJAkFSxY0LIsffr0ioqKkiSdOHFCf/zxhzw9PS2vatWqKTIyUmFhYQkef82aNcqePbuqVKkiScqRI4eqVKmiDRs2WHp3Q0NDVapUKat7fcuVK2d1nGbNmunXX3/V1atX9fjxY23duvWZgbJfv35atGiRKleurG7duum7775TiRIlZGNjo9DQUDk6Oqp48eKW7U0mkypUqGD1B4Ps2bNb7k2WpOLFi8vNzU3r1q2T9KSX1t3dXS4uLs/4ZAGkNY8fP9aePXusJocCAAAwijQ1PjRuCHLLli21Y8cOyzDhp23cuFFDhgxRo0aNVK5cObVq1UqhoaEaM2aM1Xbp06d/qVoSGjr7rFmYY2NjVaVKFY0cOTLeuqcDYJxbt25p586devz4sdzc3KyOYzabtWnTJrVo0UImkyleWP9nXRUqVFC+fPm0adMmFS1aVI8ePdLbb7+dYJ1+fn5q0KCBdu3apb1792r69OmaNWuW1q1bF2/yrDhms9nqnAl9ru+9956++OILDRs2TBs3bmT4ImAwoaGhioiIUPny5VO7FAAAgCRLMz210pNQe+jQIa1Zs0YFChSQs7NzvG3mzp2r5s2ba8KECfLz81PFihV14cIFSfFnNX6W5HhE0NOKFSumsLAw5cmTR4UKFVKhQoXk5OSkcePGxRsWLUkbNmzQ48ePNWPGDK1bt87qlS1bNsuEUSVKlNCxY8csPcKSdOzYsXjX0rRpU3333XfavHmzfHx8lClTpnjnvHnzpsaMGaPHjx+rWbNmmjx5sjZs2KDr169r//79cnV11b1796zqNZvNOnjw4At7XRs2bKjIyEgtWrRIN27cUMOGDZP0+QFIXXH/3Sf0nQsAAJDWpalQW7JkSRUqVEhTpkxJcOix9GSip0OHDun48eM6f/68Fi9erGXLlkmSVfh7HgcHB0lP/iF37969l667devWunfvngYOHKhTp07p1KlT6tevn44ePWo1nDfOmjVr5OnpKR8fHxUvXtzyKlGihFq3bq3jx4/r6NGj+uCDDxQREaGhQ4cqLCxMP/zwg4KCguIdr2nTpjp69Kh27NjxzKHHTk5O2rlzp4YPH66TJ0/qwoULWrFihezs7FSmTBnVqFFDJUuW1IABA7R//36FhYVpzJgxCg0NVfv27Z97/Y6OjqpXr55mzpypunXrKnPmzP/ugwSQKm7cuCHpyfcEAACA0aSpUCs96a29f/++fH19E1w/YsQI5ciRQ23atNH777+vH374QZMmTZIkq8f6PE/WrFn13nvvadKkSZo2bdpL11ygQAEtW7ZMDx480AcffKA2bdrIzs5OX375pWVSqjjHjh1TaGio/Pz8EjxW69at9cYbb2jFihV68803tWTJEl25ckVNmzbVhAkTrCaKipM3b15VqlRJTk5Olnt0/yldunSaN2+ebGxs1KFDB73zzjv6+eefNXfuXBUsWFC2trZauHChSpUqpY8++kjvvfee/vjjDy1evNhq9uhnadasmR49esQEUYABffjhhzp9+rTeeOONF257+vRp9erV6xVUBQAAkDgmc2LH7ALPERISoqCgIO3YsUM2Nv/ubyVxf5Qo+OB3xdy7lpzlAZBk65hLTlXapHYZr62HDx/q5MmTKlmypGVEEJCcaGNISbQvpLSktrG4bPD0HETPkqYmioLxHD9+XGfOnNH06dPVpk2bfx1oAQAAAODfIIHgpfz2228aPny4ypYt+8J7bwEAAAAgudFTi5fi5+f3zPuDAQAAACCl0VMLAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAw0qX2gUA/2SbMVtqlwC8lvhvCwAAvI4ItUhzMrn5pnYJwGvLbI6VycQgHQAA8PrgXzZIU6KiohQREZHaZeA1FRERoRMnTvyn2xiBFgAAvG741w3SHLPZnNol4DVlNpsVERFBGwMAAHiNEGoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFmmOyWRK7RIAAAAAGAShFmmKvb29MmTIkNplpGlmszm1SwAAAADSjHSpXQDwT1HX/1Ts44jULiNNsrHLIPucLqldBgAAAJBmEGqR5sQ+jpA56mFql5EmxaZ2AQAAAEAaw/BjAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFngNxMbG6uuvv1ajRo3k6empunXraty4cbp//36C2y9ZskSurq66ePHiK64UAAAASF7pUrsAAC9v/vz5mjp1qjp16qSqVavq7Nmzmj59uv744w8tXLhQJpPJsu3Zs2cVGBiYitUCAAAAySfVe2q9vb3l6uqqRYsWJbj+k08+kaurq4KCgl7qPG3bttWQIUMs73/44Qf9+eefkqR9+/alWq/VN998I1dXV40bNy7Zj+3q6qqQkJBnrh8yZIjatm2brOf8448/tHPnzmQ9Jp4vNjZW8+bNU8uWLTVgwABVq1ZNfn5+GjlypH7++WcdO3bMsm1MTIwCAgKUJUuW1CsYAAAASEapHmolyc7OTtu2bYu3PDo6Wt99951VL9O/FRQUpGHDhkmS/v77b3Xr1k03b96UJHl6emrPnj3KkyfPS58nqUJCQlSkSBGtW7dOkZGRyXrsPXv2yNfXN1mP+SJdu3bV0aNHX+k5/+vu37+vJk2aqGHDhlbLixYtKkm6cOGCZdmCBQt048YNdenS5ZXWCAAAAKSUNBFqq1atqt9++01XrlyxWv7LL7/IwcEhWcJmlixZ5OjoKEkym81W6+zt7ZUzZ07Z2tq+9HmSIiwsTIcPH9bAgQMVHh6urVu3Juvxc+bMqfTp0yfrMZH2ZM6cWcOHD1f58uWtlm/fvl2S5OLiIulJL3pwcLDGjRunDBkyvPI6AQAAgJSQJkKtu7u78ubNq2+//dZq+ZYtW/T222/H66ldtWqVGjVqJHd3d3l4eKh169ZWvYPe3t6aOHGifH19VblyZe3fv98y/PjixYuqW7euJKldu3YKCgqKN/zY29tbc+fOVZcuXVS2bFl5e3tr+/bt2r59u+rXry8PDw916tTJ0tMrPQmoH374oTw9PVWjRg0NGDBA169ff+51h4SEyMnJSXXq1FG5cuW0YsWKeNv89ddf6t69u8qXL6/KlSurf//+VufdsGGDGjduLHd3d9WtW1dLliyxrHt6+LHZbNbMmTNVq1YteXh4KCAgIF7P8NWrV9WvXz9VqFBBlStXVrdu3XTu3DnL+iFDhmjIkCGaOHGiqlatqrJly6pr1666evWq5XP7+++/FRwcnOzDmpE0v//+u+bOnas6deqoePHiio6O1uDBg/X++++rUqVKqV0eAAAAkGzSRKiVpLffftsq1EZFRWn79u165513rLb7/vvvNWbMGHXu3Flbt27V4sWLFRkZqeHDh1ttt2zZMg0fPlzz58+Xh4eHZXmePHm0atUqSU+GJPv7+ydYz8yZM+Xr66uNGzeqRIkSGjRokGbPnq3Jkydr9uzZOnr0qObNmyfpSRhs3bq1ChUqpNWrV2v27Nm6f/++WrZsqYcPHyZ4/JiYGK1fv14+Pj6ytbWVr6+vDh8+rFOnTlm2CQ8Pl5+fn6KiorRkyRItWrRI58+fV9++fSU9Cf2DBw9WkyZNtGHDBvXv31+ff/55gvfRzp07V/Pnz9egQYMUEhKizJkza8uWLZb1Dx8+tATRZcuWaenSpcqaNatatGhhCa2StGnTJt25c0fLli3TvHnzdPz4cU2dOlWStHr1auXOnVv+/v4vfQ80/r2DBw+qc+fOyp8/v8aPHy9Jmj17tsLDwzVgwIBUrg4AAABIXmkq1P7222+WAPXTTz8pW7ZsKlWqlNV2WbJk0WeffaYmTZooX7588vDwUPPmzRUaGmq1Xe3atVWtWjW5ubnJ3t7estzW1lbZsmWTJDk5OSljxowJ1uPl5aV3331XBQsWVIsWLfTgwQP169dP7u7uqlKliqpVq6Y//vhDkvT1118rd+7cGj58uJydnVWmTBlNnTpVN2/ejNf7HGf37t26fv26JbQ3aNBAtra2WrlypWWbLVu26MGDBwoMDFSZMmVUqlQpffrpp/Lw8LAEXV9fX3Xq1EmFCxfWO++8oxEjRsQbcmw2m7V06VK1a9dODRs2VNGiRRUQEKCSJUtattm8ebPCw8M1efJklShRQsWLF9dnn32mTJky6ZtvvrFs5+joqDFjxsjZ2VmVKlWSr6+vDh06JEnKli2bbG1t5eDgwEREqWTLli3q2LGj8uTJo8WLFytr1qw6ceKEZs+erbFjx8re3l7R0dGKjY2V9GSSqZiYmFSuGgAAAPj30swjfcqUKaMCBQpo27ZtateunbZs2RKvl1aSKlasqLCwMM2YMUNnzpzRX3/9pdOnT1v+kR6nUKFCL1XP0/vH3X9YsGBBy7L06dNbhgGfOHFCf/zxhzw9Pa2OERkZqbCwsASPv2bNGmXPnl1VqlSRJOXIkUNVqlTRhg0b9PHHH8vBwUGhoaEqXLiwnJycLPuVKFFCJUqUkCSFhobG+4xatGgR71y3b9/W9evX5ebmZrXcw8PDUt+JEyd09+5dVaxY8bnXULBgQdnZ2VneOzo66vHjxwleI16tBQsWaPLkyapUqZJmzJhhuYd8x44devz4sTp06BBvn3r16qlSpUpaunTpK64WAAAASB5pJtRK/zcEuWXLltqxY4dlmPDTNm7cqCFDhqhRo0YqV66cWrVqpdDQUI0ZM8Zqu5edIClduvgfzbNmYY6NjVWVKlU0cuTIeOvigsXTbt26pZ07d+rx48dWQTM2NlZms1mbNm1SixYtEqzhRTUmJK7uf06Q9fT+sbGxKlKkiGbNmhVvfwcHB8vPT/d6I+1YsWKFJk2aJF9fX02cONHq99SiRQt5eXlZbb9z504FBwdr1qxZKly48KstFgAAAEhGaWb4sfQk1B46dEhr1qxRgQIF5OzsHG+buXPnqnnz5powYYL8/PxUsWJFyyNL/hnaniU5HhH0tGLFiiksLEx58uRRoUKFVKhQITk5OWncuHHxhkVLTyZ3evz4sWbMmKF169ZZvbJly2aZMMrFxUXnzp3TvXv3LPseP35cVatW1ZUrV+Ts7Bzv8Tnjx49X7969rZZlzZpVefLk0cGDB62WP/380uLFi+vSpUtydHS0XEPevHk1ZcoU/frrry/9GSHlXL9+XePHj1e+fPnk5+enEydO6LfffrO87Ozs5ObmZvXKly+fpCe/97hH/wAAAABGlKZCbcmSJVWoUCFNmTIlwaHH0pOJng4dOqTjx4/r/PnzWrx4sZYtWybpyeRSiRHX8xgaGmoVGP+t1q1b6969exo4cKBOnTqlU6dOqV+/fjp69KiKFy8eb/s1a9bI09NTPj4+Kl68uOVVokQJtW7dWsePH9fRo0fVqFEjOTk56eOPP9apU6d07NgxjRw5UsWLF1fu3LnVpUsXbdmyRUuXLtX58+e1ceNGff311/L29o53zg8//FDLly/XqlWrdPbsWU2dOlVHjhyxrG/cuLGcnJzUu3dv/f777woLC9OQIUO0e/duubq6JvqzyJgxo86dO6cbN278uw8TSbZr1y49evRIf//9t/z8/NSyZUur186dO1O7RAAAACDFpKlQKz3prb1//758fX0TXD9ixAjlyJFDbdq00fvvv68ffvhBkyZNkqR4vZbPkjVrVr333nuaNGmSpk2b9tI1FyhQQMuWLdODBw/0wQcfqE2bNrKzs9OXX35pmZQqzrFjxxQaGio/P78Ej9W6dWu98cYbWrFihTJkyKAFCxYoOjparVq1UufOneXi4mKZbdjb21tjxozR8uXL5evrq+DgYAUEBOjdd9+Nd1w/Pz99/PHHmjVrlpo0aaI//vhDzZs3t6x3dHTUsmXLlDVrVnXq1EnNmzfX1atXtXDhwgR7zJ+lbdu22rlz5zNnlUbya968uU6fPv3MV7NmzeLt06xZM50+fVr58+dPhYoBAACA5GMyJ3bMLpDC4v4oUSy7ZI5K+FFI/3Umewelz+v24g2RoIcPH+rkyZMqWbKk1b3iQHKgfSGl0caQkmhfSGlJbWNx2eCfk90mJM311AIAAAAAkFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFjpUrsA4J9s7DIoNrWLSKNs7DKkdgkAAABAmkKoRZpjn9MltUtI08xms0wmU2qXAQAAAKQJDD9GmhIVFaWIiIjULiNNI9ACAAAA/4dQizTHbDandgkAAAAADIJQCwAAAAAwLEItAAAAAMCwCLUAAAAAAMMi1AIAAAAADItQCwAAAAAwLJOZqWaRRhw6dEhms1l2dnY8tgYpwmw26/Hjx7QxpAjaF1IabQwpifaFlJbUNhYVFSWTyaRy5cq9cNt0yVEgkBziGjdfpEgpJpNJ9vb2qV0GXlO0L6Q02hhSEu0LKS2pbcxkMiU6F9BTCwAAAAAwLO6pBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoRaqLjY3V9OnTVbNmTXl4eOjDDz/UhQsXUrssGNjVq1fl6uoa7xUSEiJJOnnypNq0aSMPDw95e3vryy+/TOWKYRRz5sxR27ZtrZa9qD3xHYekSKiNDR8+PN73mbe3t2U9bQzPc+fOHX3yySeqVauWypUrpw8++EAHDhywrN+7d6+aNWumsmXLqkGDBtq8ebPV/pGRkRo9erSqVq0qT09PDRgwQLdu3XrVl4E06kXtq2PHjvG+v57+jku29mUGUllQUJC5cuXK5h9++MF88uRJs7+/v/mtt94yR0ZGpnZpMKidO3ea3dzczFevXjVfu3bN8oqIiDDfunXLXLlyZXNAQID5zz//NK9evdrs5uZmXr16dWqXjTRu2bJl5hIlSpjbtGljWZaY9sR3HBIroTZmNpvNzZs3NwcGBlp9n928edOynjaG5+nYsaO5YcOG5l9//dV85swZ8+jRo83u7u7msLAw859//ml2c3MzBwYGmv/880/z/PnzzaVKlTL//PPPlv2HDBli9vHxMf/666/m33//3fzuu++a/fz8UvGKkJY8r32ZzWZz1apVzV999ZXV99ft27ct+ydX+yLUIlVFRkaaPT09zcuXL7csu3v3rtnd3d28cePGVKwMRjZ37lxzo0aNElw3e/Zsc40aNcyPHz+2LJsyZYr5rbfeelXlwWCuXLli7tq1q9nDw8PcoEEDq8DxovbEdxwS43ltLDY21uzh4WH+7rvvEtyXNobnOXfunLl48eLmAwcOWJbFxsaafXx8zFOnTjWPGDHC3Lx5c6t9+vfvb/b39zebzU/aZokSJcw7d+60rD9z5oy5ePHi5kOHDr2ai0Ca9aL2dePGDXPx4sXNx48fT3D/5GxfDD9Gqjp16pQePHigqlWrWpZlzpxZpUqV0q+//pqKlcHITp8+LWdn5wTXHThwQJUqVVK6dOksy6pUqaJz587pxo0br6pEGMjx48dlZ2enDRs2qGzZslbrXtSe+I5DYjyvjZ0/f14PHz5U0aJFE9yXNobnyZo1q+bOnSs3NzfLMpPJJJPJpPDwcB04cMCq7UhPvsMOHjwos9msgwcPWpbFKVKkiN58803aF17Yvk6fPi2TyaQiRYokuH9yti9CLVLVlStXJEl58uSxWp4rVy7LOiCpQkNDdevWLfn5+alatWr64IMPtHv3bklP2lzu3Lmtts+VK5ck6fLly6+8VqR93t7eCgoKUoECBeKte1F74jsOifG8NhYaGipJWrp0qby9veXj46MxY8bo3r17kvj/UTxf5syZVbt2bdnb21uWbdu2TX/99Zdq1qz5zO+wiIgI3b59W1evXlXWrFn1xhtvxNuG9oUXta/Q0FA5OjpqzJgxqlWrlho0aKCpU6cqKipKkpK1fRFqkaoiIiIkyeo/Bkl64403FBkZmRolweCio6N15swZ3b17V7169dLcuXPl4eGhLl26aO/evXr06FGC7U0SbQ5J9qL2xHccXlZoaKhsbGyUK1cuzZ49W0OGDNGePXvUo0cPxcbG0saQJIcOHVJAQIDeeusteXl5JfgdFvc+KipKERER8dZLtC8k7J/tKzQ0VJGRkXJ3d9f8+fPVvXt3rVq1SsOHD5ekZG1f6V68CZBy0qdPL+nJF2fcz9KTfwxmyJAhtcqCgaVLl0779u2Tra2tpU2VKVNGf/zxhxYsWKD06dNb/kIYJ+6L08HB4ZXXC2N7UXviOw4vq3v37mrdurWyZs0qSSpevLhy5sypFi1a6OjRo7QxJNr27ds1cOBAlStXTp9//rmkJ+Hhn99hce8zZMiQ4HecRPtCfAm1rzFjxmjw4MFycnKS9OT7y87OTv369dOgQYOStX3RU4tUFTdc6tq1a1bLr127pjfffDM1SsJrIGPGjFb/uJOkYsWK6erVq8qdO3eC7U0SbQ5J9qL2xHccXpaNjY0l0MYpVqyYpCdDj2ljSIxly5apV69eqlOnjmbPnm0ZUZInT54E246Dg4McHR2VO3du3blzJ17woH3hac9qX+nSpbME2jhPf38lZ/si1CJVlShRQpkyZdK+ffssy8LDw3XixAlVrFgxFSuDUf3xxx8qV66cVZuSpGPHjsnFxUUVK1bUwYMHFRMTY1n3yy+/qEiRIsqePfurLhcG96L2xHccXtagQYPUoUMHq2VHjx6VJLm4uNDG8EJfffWVxo4dKz8/PwUGBloN96xQoYL2799vtf0vv/yicuXKycbGRuXLl1dsbKxlQh9JOnv2rK5evUr7gqTnt6+2bdsqICDAavujR4/Kzs5OhQsXTtb2RahFqrK3t1ebNm30+eefa8eOHTp16pT69eun3Llz66233krt8mBAzs7OKlq0qMaMGaMDBw4oLCxM48eP12+//abu3bvrvffe0/379zVs2DD9+eefCgkJ0eLFi9W1a9fULh0G9KL2xHccXlb9+vW1d+9eBQcH6/z589q1a5eGDh2qhg0bytnZmTaG5zp79qzGjRunevXqqWvXrrpx44auX7+u69ev6969e2rbtq2OHDmizz//XGFhYVq4cKG+/fZbde7cWdKTESfvvPOOhg8frn379unIkSPq37+/KlWqJA8Pj9S9OKS6F7Wv+vXra/369fr666914cIFbdmyRZMmTVKnTp2UKVOmZG1fJrPZbE6ZywQSJyYmRoGBgQoJCdGjR49UsWJFffLJJ8qfP39qlwaDunHjhqZMmaIff/xR4eHhKlWqlAYOHKgKFSpIko4cOaLPPvtMJ06cUM6cOeXv7682bdqkctUwgiFDhujvv//W0qVLLcte1J74jkNSJNTGtm7dqrlz5+rMmTNydHRUo0aN1LdvX8sQP9oYnmX27Nn64osvElzXtGlTTZgwQbt379bkyZN17tw55c+fX7169ZKvr69lu4cPH2rcuHHatm2bJKlWrVoaPnx4vGHx+O9JTPtavny5li9frgsXLljmA+jSpYtsbJ70rSZX+yLUAgAAAAAMi+HHAAAAAADDItQCAAAAAAyLUAsAAAAAMCxCLQAAAADAsAi1AAAAAADDItQCAAAAAAyLUAsAAPCK8URFAEg+hFoAANKQtm3bqlSpUjp69GiC6729vTVkyJBXUsuQIUPk7e39Ss6VFNHR0RoyZIg8PT1Vrlw5/fLLL/G2uXjxolxdXZ/7+vrrr1957eHh4Ro0aJAOHDjwys8NAK+rdKldAAAAsBYTE6OAgACFhITI3t4+tctJc3788UetXbtWPXr0ULVq1VSqVKlnbtu9e3d5eXkluK5AgQIpVOGznTx5UuvXr9d77733ys8NAK8rQi0AAGmMo6Oj/vjjD82YMUP9+vVL7XLSnDt37kiSmjVr9sJgWrBgQXl4eKR8UQCAVMPwYwAA0piSJUvq3Xff1fz583Xs2LHnbuvq6qqgoCCrZUFBQXJ1dbW8HzJkiDp16qSVK1fKx8dH7u7uatWqlc6ePasffvhBjRo1UtmyZfX+++/r5MmT8c6xcuVKeXl5yd3dXe3bt9eJEyes1l+6dEn9+/dXpUqVVLZs2XjbxA0FXrRokRo0aKCyZctqzZo1CV5PTEyMli9frkaNGsnd3V1eXl76/PPPFRkZabmWuOHXPj4+atu27XM/nxeJjIxU+fLlNXHiRKvl0dHRqlKlij799FPLslWrVumdd95RmTJl5OXlpaCgIMXExFjWDxkyRB06dNCaNWtUv359lSlTRk2aNNHu3bslSfv27VO7du0kSe3atbPUfv78eXXr1k2VK1dW2bJl1bJlS+3ateulrgsA/ksItQAApEFDhw5V1qxZFRAQoKioqJc+3uHDh7Vs2TINGTJE48ePV1hYmLp06aLx48era9euCgwM1OXLlzVw4ECr/a5cuaLg4GD17dtXgYGBunv3rtq2batLly5Jkm7duqVWrVrp+PHjGjFihKZMmaLY2Fj5+fkpLCzM6lhBQUH68MMPNWnSJFWvXj3BOj/55BONHz9ePj4+mjVrlvz8/LRs2TL16NFDZrNZPXr0UPfu3SVJwcHBGjly5HOvOzY2VtHR0fFecWH0jTfeUP369bV161aryZt++ukn3b59W02aNJEkzZkzRyNGjFDVqlU1e/Zs+fn5ad68eRoxYoTV+Y4dO6YFCxaod+/emjFjhmxtbdWrVy/dvXtXpUuX1ieffGK5zpEjRyo2NlZdu3ZVRESEJk2apJkzZypLlizq3r27/vrrr+deGwDgCYYfAwCQBjk5OWnMmDHq3r17sgxDfvDggaZOnSpnZ2dJ0v79+7VixQotXrxYVatWlST99ddfmjhxosLDw5U5c2ZJT3pOZ8yYIXd3d0lS2bJl5ePjo6VLl2rw4MFasmSJ7ty5o6+//lr58uWTJNWqVUu+vr6aNm2apk+fbqnh7bfffu69pH/++adWr16tAQMGqEuXLpKk6tWrK1euXBo0aJB2796t2rVrq2DBgpKe9Gjnz5//udc9bNgwDRs2LN5yBwcHHT58WJLUpEkTrVmzRgcPHlSFChUkSZs3b1bRokXl5uame/fuaebMmWrZsqWGDx8uSapRo4ayZMmi4cOHq2PHjipWrJgk6d69ewoJCbHU6ODgoDZt2uiXX35R/fr15eLiIklycXGRi4uLrl+/rjNnzqhHjx6qXbu2JMnd3V3BwcHJ8scMAPgvINQCAJBGeXt7q3Hjxpo/f77eeustlS5d+l8fy8nJyRJoJSlHjhySnoTUOFmyZJEkq1BboEABS6CVpJw5c8rDw0O//vqrJGnv3r0qWbKk3nzzTUVHR0uSbGxsVKtWLW3YsMGqhpIlSz63xv3790uS3nnnHavl77zzjgICArRv3z5L8Eusjz76KMGJomxtbS0/V6pUSXnz5tXmzZtVoUIFRUZGavv27ZZgffjwYT169Eje3t6Wa5RkmRn6p59+soTabNmyWQKtJOXOnVuSFBERkWB9OXLkkIuLi0aMGKE9e/aoRo0aqlWrlgICApJ0nQDwX0aoBQAgDRs+fLj27t2rgICAZ96HmhiZMmVKcLmDg8Nz94sLv0/Lnj27Ll++LOnJpE1//fXXMwP302HuRee6e/eupCfB+Wnp0qVT1qxZde/evefun5B8+fLJzc3tuduYTCY1atRIq1at0vDhw/XDDz/o4cOHatSokaT/m5gqLuT+07Vr1yw/Z8iQId6xpSfDoJ917oULF2rWrFn6/vvvtW7dOtnZ2cnHx0ejR4+Wk5NToq4TAP7LCLUAAKRhTk5OGjVqlHr27KmZM2cmuM3TkxVJ0sOHD5Pt/HFB82nXr19XtmzZJD2ZqblSpUoaNGhQgvsn5ZFEcQHu+vXrlqHMkvT48WPdvn1bWbNmTUrpSdKkSRPNmTNH+/bt05YtW1SxYkVLDXG91p9//rkKFy4cb9+Egn9SvPnmmxo1apRGjhypU6dO6dtvv9W8efOUNWvWF94zDABgoigAANI8Hx8fNWzYUHPnztWtW7es1mXKlElXr161Wnbo0KFkO/fZs2d1/vx5y/vLly/r8OHDqly5sqQnQ3fPnj2rIkWKyM3NzfJav369Vq9ebTXM90UqVaok6cn9rE/bvHmzYmJiVL58+WS4ooQ5OzurdOnS2rx5s3bt2qXGjRtb1pUtW1Z2dna6evWq1TWmS5dOgYGBunjxYqLP88/P4/Dhw6pWrZqOHDkik8mkkiVLql+/fipevLhlMi4AwPPRUwsAgAGMGDFCv/zyi27cuGG13MvLS5s3b1bZsmVVqFAhhYSEJOusuW+88Ya6d++ufv36KSYmRtOmTVOWLFnUvn17SVKHDh20fv16dejQQf7+/sqaNau2bNmib775Jsn3hbq4uKhp06aaPn26IiIiVLFiRZ08eVLBwcGqXLmyatasmeT6z58/r99++y3BdU5OTipSpIjlfZMmTTRx4kSlS5dODRo0sCzPmjWrOnfurGnTpun+/fuqXLmyrl69qmnTpslkMqlEiRKJrsfR0VGStHPnTjk5OalUqVJKnz69Bg0apF69eilHjhz6+eefdfLkScvjfwAAz0eoBQDAALJkyaJRo0bpo48+sloeEBCg6OhoSxjz9fXVgAEDLLP0vqxSpUqpfv36GjVqlO7du6eqVatq6NChluHHb775plasWKEpU6Zo1KhRioyMVOHChfXZZ5+pefPmST7fZ599pkKFCmnNmjWaN2+ecuXKpXbt2qlHjx6ysUn6ALNZs2Zp1qxZCa6rW7eu1ZDuhg0batKkSapTp44lfMbp27evcubMqa+++krz58+Xk5OTqlatqv79+8fb9nmKFSumhg0bavny5frxxx+1adMmLVy4UFOmTNFnn32m8PBwFS5cWGPGjFGzZs2SfL0A8F9kMj/9UDYAAAAAAAyEe2oBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBh/T+7miDKKKhvzQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/65/44v_jv_n0qx33txj6vvbf1k00000gn/T/ipykernel_33900/3247333995.py:26: FutureWarning: \n", + "\n", + "Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.\n", + "\n", + " ax_us = sns.barplot(x='count', y='Category', data=us_plot_data, palette='Blues_r')\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9AAAAImCAYAAAC7EmJYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8XUlEQVR4nOzdd3iN9//H8dcJCULsVZsgVkKMEFsaRQSlrb2pWZuKolaJGSu22LVHzFZL+7WqdrU1qrX33jJEzu8PV87PaYI7lTgRz8d15ZJzz/d9PieJ1/l87s8xmc1mswAAAAAAwCvZ2boAAAAAAADeBQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AQCJjNpvfy3MnFonxOUzI1/Rfa0vI1wQg/hCgAQA25efnJxcXl1d+tWjRIl5r6Nu3b4zn/f7771+6z9SpU19bd1hYWLzWHZNDhw6pQ4cOhrZ98OCBAgMDVadOHbm7u8vT01OtWrXSTz/9FOvzhoeHa9SoUdq4cWOs941P+/btk4uLi/bt2xev51m7dq1cXFx06dKlNzrOv9vv0qVLcnFx0dq1a9+0xBh5eXnJz8/vpetdXFw0derUWB2zRYsWVj+zq1at0pgxY/5zjS/y8/OTl5fXa7f76aef1KpVK5UuXVqurq6qXr26Ro4cqdu3b1tt919rmz59uoKCgmK9H4B3X1JbFwAAeL916dJFjRs3tjyePn26jh8/rsDAQMuyVKlSxWsNJ0+elK+vb7SgnidPntfuu2LFipeuc3BweNPSYm3VqlU6ffr0a7c7ffq0Pv/8c0VGRqply5YqVKiQnjx5oo0bN6pz587q0aOHunTpYvi8N27c0MKFC+Xv7/8m5ce5okWLasWKFcqfP3+8nqdq1apasWKFMmfO/EbHMdp+CdmQIUOsHs+YMUMeHh5v7fzr1q3TgAED1LhxY7Vu3VopUqTQP//8o9mzZ+vnn3/WmjVrlCZNmjeqbfLkyfriiy/iunQA7wACNADApnLlyqVcuXJZHqdPn14ODg4qUaLEWzl/WFiYzp49q1atWv2nc76tOuPS06dP1bNnT9nb22vp0qXKkCGDZZ23t7cGDx6syZMny8vLS4UKFbJhpW8uVapUb6WN0qdPr/Tp08f7ed4F8f1mxetMmzZNtWvX1tChQy3LypUrp9KlS6tevXpatWqV2rdvb7sCAbzTGMINAHgn7NmzR02bNlWpUqVUtmxZ9enTR1evXrWsjxpCe/ToUdWvX19ubm6qU6fOK4dhS9KpU6cUERGhwoULx0vdGzdulIuLi06dOmW1fNu2bXJxcdHx48clSffu3dPXX3+t8uXLy9XVVQ0bNtTevXut9nFxcdG3336rgQMHysPDQ+7u7urRo4du3bol6fnw1nXr1uny5cuvHPa7Y8cOnTp1Sj169LAKz1G6d++u5s2bKyIiwqrepk2byt3dXcWKFVPNmjX17bffSno+zPjDDz+UJA0YMMBqiO3BgwfVvHlzFS9eXB4eHurfv7/u3Lljdb4jR46oWbNmKlGihKpWraqFCxeqdevWVkOLHz58KH9/f3l7e8vV1VW+vr5avXq11XG8vLw0atQotWrVSm5ubho4cGCMQ7hPnTqljh07qmTJkipZsqS6du2qixcvWh1r4cKFqlmzplxdXVWpUiUNHTpUjx49ivH5lKIP4fbz81Pr1q21Zs0a1ahRQ8WKFVO9evW0c+fOlx7jVe138+ZNde/eXe7u7vLw8NDgwYP1+PFjq/1XrVql2rVrq1ixYqpataqmTp2qZ8+evfR8/8XrXoOS9RBuLy8vXb58WevWrbN6fq5cuaLevXvLw8NDxYsXV6tWrSw/C1Hu37+vAQMGyMPDQ2XKlNG4ceMUGRn52hpv3boV4/3JhQoV0oABA1SsWLFX1nbgwAG1a9dOZcqUUbFixeTl5aWpU6dazu3i4iJJCgwMtHwvxc/rCkDCQ4AGACR4wcHBatu2rT744AMFBARowIABOnLkiBo1ahTtnsaOHTvqww8/VGBgoPLmzauePXtqx44dLz32yZMnJT0PHxUrVlSxYsXUtGlTHT161FBtERERMX5F/Wfb29tbjo6O2rx5s9V+mzZtUoECBVSkSBGFhYWpVatW2r59u3r16qXAwEBlzZpV7du3jxaiJ06cqMjISAUEBOjLL7/Uzz//rFGjRkl6Phy+SpUqypQpk1asWKGqVavGWPPOnTuVJEkSValSJcb1mTJl0uDBgy1B43//+5+6du2qokWLavr06Zo6dapy5syp4cOH6+jRo8qcObNlyH3nzp0t3x84cECtW7dW8uTJNWnSJH311Vfav3+/WrZsqdDQUEnPh5K3bt1akhQQEKBu3bpp9uzZOnTokKWe0NBQNW3aVBs3blT79u01ffp0lSpVSgMHDtTMmTOtav/222/l6uqq6dOn69NPP412bWfPnlXjxo11+/ZtjRkzRiNHjtTFixfVpEkTy2tp06ZNGjdunJo1a6agoCB17dpV69ev14gRI2J8vl7mzz//VFBQkLp3765p06YpSZIk6tatm+7fvx/j9q9qv8mTJ+uDDz7Q9OnT1apVK61cudLqNodZs2Zp8ODB8vT01MyZM9WsWTPNmTNHgwcPjlXNRrzqNfhvgYGBypQpk6pUqWIZ4n7nzh01btxYx44d0+DBgzVhwgRFRkaqWbNmluHrkZGRat++vXbs2KH+/ftr9OjROnz4sLZs2fLa+qpWrarNmzera9eu2rRpk65fv25Z17p1a5UrV+6ltZ08eVKtW7dW2rRpNXHiRM2YMUOlS5dWYGCgvvvuO0n/f9vGp59+avn+bb6uANgWQ7gBAAlaZGSkxo8fr4oVK2rChAmW5SVLlpSPj4+CgoL05ZdfWpa3aNFCXbt2lSRVqlRJ9evX17Rp014aFk+cOCFJCgkJ0YQJE3Tv3j3Nnj1bLVu21IoVK147hLlo0aIxLm/WrJm+/vprpUiRQjVq1NCWLVvUq1cvSdLjx4/1888/W+pcv369Tp48qZUrV6p48eKSpMqVK6tFixYaP3681qxZYzluwYIFre4z/v333y297Lly5TI0BP7atWtKly6dUqZM+cpri/LPP/+ofv36GjhwoGWZu7u7ypYtq3379ql48eKWHvxcuXKpSJEikqQJEyYob968mjVrlpIkSSJJKl68uGrXrq01a9aoWbNmmjVrlpycnDR37lylSJFCkpQvXz6r++LXrl2rU6dOafny5XJ3d5f0vG0jIiI0ffp0NW7cWGnTppUkZcuWTX379rXs++/JwwIDA5UiRQotWLDAcm+9p6envL29NXfuXPXv31/79+9Xjhw51KxZM9nZ2cnDw0OOjo4vDb4v8/DhQ61du9Zyi4Kjo6OaN2+uX3/9VTVq1Ii2fUzt9+TJE0lSjRo1NGDAAEu9e/bs0a+//mo5z/Tp09WoUSMNGjRIklSxYkWlTZtWgwYNUps2bVSgQIFY1f4qr3oN/luRIkXk4OCg9OnTW65p4cKFunfvnpYtW6bs2bNLev569/Hx0eTJkzVlyhTt3LlTv//+u+bMmaPKlStbrtvIBGIjRoxQZGSkfvjhB23btk3S8+f2ww8/VJs2bZQlS5aX1nby5EmVL19e48aNk53d836mChUq6KefftK+fftUu3Zty7ZZs2a1fP82X1cAbIsADQBI0M6ePaubN2+qT58+Vstz5cold3d37d+/32p5/fr1Ld+bTCZVr15dU6dOVWhoqJInTx7t+M2bN1e1atVUqVIlyzJPT0999NFHmjlzpiZNmvTK+v49jDjKi0Oj69Wrp3Xr1un333+Xm5ubtm/frvDwcNWtW1eStHfvXmXKlElFixa1GjZdrVo1jR07Vvfv37dMevTvYJw1a1aFhIS8ssZ/S5IkSayG9kbdL/r48WOdPXtWFy5c0B9//CHp+ezbMQkJCdHRo0fVrl07mc1my3XlzJlTzs7O2rNnj5o1a6Zff/1VlStXtoRn6Xk4jwpWkrR//35lz57dEp6j1K1bV6tXr9bRo0ctb5C8bij+r7/+Kg8PDyVPntxSU6pUqVS6dGn98ssvkp7fL7tixQo1aNBA3t7eqlKliurUqSOTyWT4OZOe3xf94v39WbNmtTw3sVW6dGmrxzly5LD00h85ckShoaHy8vKyev1Ehc09e/a8UYD+93W/6Wtw7969Kly4sLJkyWKp187OTpUrV9aGDRskPR/6b29vb/Vz6ejoqCpVqujAgQOvPL6Tk5OmTJmiS5cuaceOHdq3b5/27dun+fPna8WKFZo3b16011KUjz/+WB9//LFlboTz58/rxIkTevbsmZ4+ffrSc77N1xUA2yJAAwAStHv37kmSMmbMGG1dxowZo903+e9ZkDNkyCCz2awHDx7EGKDz5cunfPnyWS1LnTq1SpYsaRne/Squrq6v3aZs2bLKkiWLNm/eLDc3N23evFkeHh6WQHXv3j3dvHnzpb3ZN2/etAToF4Om9Dx4xPbzaLNnz67//e9/evz48Ut7oa9du2ap786dOxoyZIi2bdsmk8mk3LlzWwLdy8794MEDRUZGas6cOZozZ0609cmSJbMcO6b7sF9s7/v37ytTpkwv3ebBgweWZY6OjjHWE+XevXvasmVLjEOBoyYB8/HxUWRkpJYuXWoZsp49e3b17dtXPj4+rzz+i/7dVlFBych9vK871ovtHvUz8rKPL7tx48ZLj+vo6PjSN0Gilv/73G/6Grx3757Onz//0td7SEiI7t+/r7Rp00YLlzG9Dl4mqre3WbNmioyM1LZt2+Tn56cRI0a8dH6A0NBQjRgxQuvXr1dERIRy5Mghd3d3JU2a9JXX+DZfVwBsiwANAEjQoobmvjhJUZSbN28qXbp0Vsvu3btnFb5u3bqlJEmSWI7zb1u2bFHq1KlVsWJFq+VhYWFxNquynZ2d6tSpo02bNqlTp07as2ePhg8fblnv5OSkPHnyaPz48THunyNHjjipI0rFihW1ePFi7dq1SzVr1oy2/s6dO/rwww/VtGlTDRw4UH379tWZM2e0YMECubu7y8HBQSEhIVq5cuVLz5EyZUqZTCa1bt1atWvXjrY+KoRlzZo1xra9ffu25Y2NNGnS6Pz589G2uXnzpiRFew28ipOTk8qXL682bdpEW5c06f//t8jX11e+vr56+PChdu/erTlz5qhfv34qVaqUZQhwQpE6dWpJ0vjx42P86LWY3nx6cd3LAva1a9deu/9/4eTkJA8PD6tbL17k4OCgdOnS6e7du3r27Jll+L/0/28WvMzWrVs1ZMgQLVu2THnz5rUst7Oz00cffaQDBw688nU7cuRIbd26VZMmTVL58uUtb8h4enq+9poS2+sKQMyYRAwAkKDlzZtXmTJl0qZNm6yWX7x4Ub/99ptKlixptTzqnkfpee/oDz/8oFKlSr30M5mXL1+uIUOGWPXCXb9+XYcPH1bZsmXj7Drq1auna9euWSaT+uijjyzrPDw8dPXqVWXIkEGurq6Wrz179mju3LlWAeJ1ou7bfJWKFSuqYMGCmjhxou7evRtt/YQJExQREaE6depIkg4dOqSPPvpIZcuWtTyPUbNJR/Wm/rvGVKlSqUiRIjpz5ozVNRUoUEBTp0613JtcpkwZ7dq1S2FhYZZ9jx8/bpkROWqby5cv68iRI1bn2LBhg+zt7eXm5vbaa47i4eGhf/75R4ULF7bUVKxYMS1YsEA//vijJKlnz56W+9OdnJxUq1YtdenSRREREa/szY0LRtrv34oXLy57e3tdv37d6rlOmjSpAgICrJ7Lf/Pw8NDRo0dj3Ob7779XkiRJVKZMmVjX9KJ/X5OHh4fOnj2rvHnzWtW7fv16rV69WkmSJJGnp6ciIiKsfp7Dw8O1Z8+eV56rQIECunfvnhYuXBjj+nPnzqlgwYIvre3QoUMqW7asZfI/6flkcHfu3LEaORDTNSXk1xWAuEMPNAAgQbOzs1Pv3r01YMAA9enTR3Xr1tXdu3cVGBioNGnSROvxGTt2rMLCwpQ3b16tWrVKp0+fful/pqXnMx+3adNGXbp0UcuWLXX//n0FBgYqbdq0atu27Wvr++233166Lm/evJah1wULFlThwoW1dOlS1apVyzLRkCQ1aNBAS5YsUZs2bdSpUyd98MEH+uWXXzRnzhw1b95c9vb2r60jSurUqXXr1i3t2LFDhQsXjjakXXreIzZ27Fi1bdtWn3zyiVq2bKlChQrpzp07Wrt2rXbt2qU+ffpYgqmbm5s2btyookWLKmvWrDp8+LBmz54tk8lkuffVyclJ0vP7W52dnVW8eHH17t1bHTp0sLTbs2fPNG/ePB09elRdunSRJHXq1ElbtmxR+/bt1bZtWz148ECTJ0+WnZ2dZfhugwYNtHTpUnXt2lXdu3dXjhw59NNPP2nNmjX64osvLD2wRnTp0kWNGzdWx44d1aRJEyVLlkwrVqzQtm3bNGXKFEnP71UdMmSIxowZo8qVK+vBgwcKDAxUnjx54v1zsf/dfkakS5dO7du31+TJk/Xo0SOVLVtW169f1+TJk2UymV5Zc/PmzbVq1Sq1aNFCn3/+uQoUKKDQ0FD98ssvWrx4sdq3b69s2bK98TUdP35c+/fvl5ubm1q3bq3169erdevWatu2rdKlS6ctW7Zo5cqVVhOlVaxYUYMGDdLt27eVPXt2LVq06KVD/qPky5dPHTp00KxZs3TlyhXVrVtXWbNm1e3bt7V+/Xrt3btX8+fPf2ltbm5u+u6777Rs2TI5Ozvr5MmTmjFjhtVrPWq/w4cP68CBAypdunSCf10BiDsEaABAgtegQQOlTJlSs2bNUteuXZUqVSpVqlRJvXv3jnZP5NChQzVr1ixdvHhRRYoU0bx586JNwPSicuXKad68eZo6dap69eolOzs7VapUSX379rWEwldp1KjRS9dNmzZN3t7elsf16tXT6NGjLZOHRXF0dNS3336rCRMmaNy4cXr48KGyZ8+uPn36GArxL2rQoIF27NhhCZsvuy+2cOHCWr16tebPn69ly5bp+vXrcnR0lIuLi+bOnWs1edPo0aM1YsQIy8ft5MmTR8OGDdOGDRt08OBBSc97nNu0aaMVK1Zox44d2rNnjypWrKigoCAFBgaqe/fusre3V9GiRTV//nzLRFS5c+dWUFCQxo4dq+7duytDhgzq2LGjZsyYYbk/O0WKFFq8eLEmTJhgCYn58uXTyJEjY/yoqlcpVKiQvv32W02cOFFffvmlzGazChYsqGnTplk+y7px48Z6+vSpli9frqVLlyp58uTy9PRUv379YvVmxn/x7/Yzem9sz549lSlTJi1dulRz585VmjRp5Onpqd69e7/ydZw6dWqtXr1a06dP17x583Tjxg0lT55c+fLl0zfffKOPP/74ja+pbdu2GjVqlNq1a6f58+erdOnSWr58uSZMmKChQ4cqLCxMefLkidaegYGBGj9+vKZMmaKwsDD5+PioYcOG2r59+yvP17t3bxUuXFirVq3SN998o0ePHil16tQqXbq0Vq9ebRVW/12bn5+fnj59qkmTJik8PFw5cuRQ586d9c8//+inn36yDCnv1KmTpk+frs8//1xbtmxJ8K8rAHHHZI7tzCMAACRAa9eu1YABA7R9+/Y4v2cY8Wfv3r2yt7e3epPjwYMHKl++vL788ku1bNnShtUBAGCNHmgAAGAzx44d05QpU9S7d28VLVpU9+7d0/z58+Xk5CRfX19blwcAgBUCNAAAsJm2bdsqPDxcy5Yt09WrV+Xo6CgPDw/5+/vH2SzoAADEFYZwAwAAAABgAB9jBQAAAACAAQRoAAAAAAAMIEADAAAAAGAAk4jhvXXkyBGZzWY+exEAAAB4zz19+lQmk0nu7u6v3I4eaLy3zGaz5QuJi9lsVnh4OG2bCNG2iRdtm3jRtokXbZt4vY9tazQX0AON95a9vb3Cw8OVP39+OTo62rocxKEnT57oxIkTtG0iRNsmXrRt4kXbJl60beL1PrbtH3/8YWg7eqABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgMZ7z2Qy2boExDGTyaQUKVLQtokQbZt40baJF22beNG2iRdt+3Im8/v06djAC6I+683V1dXGlQAAAADvl2eRkUpil3D6c41mg6RvoxggIes1fatOX7lj6zIAAACA94JztvSa2KWGrcv4TwjQeO+dvnJHx87dtHUZAAAAABK4hNNnDgAAAABAAkaABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQAAAAAAAYQIAGAAAAAMAAAjQAAAAAAAYQoAEAAAAAMIAADQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAAO+E3377TS1atFCJEiVUvnx59e/fX7dv37as37t3r5o3b64yZcqoQoUK6tatmy5cuBBn5ydAAwAAAAASvD///FMtW7ZUypQpFRgYqL59+2rPnj3q2rWrJOnQoUNq166d0qVLp/Hjx2vQoEE6d+6cmjRpojt37sRJDUnj5CiJkJeXly5fvmx5bDKZ5OjoqCJFiqhHjx4qU6bMGx3/0KFDMpvNKl269Cu3W7dunVatWqVTp05JkgoUKKDWrVurRo0ab3R+W/j77791+fJlVa1aVZLk4uIif39/NWjQwLaFAQAAAEjwxo0bpyJFimj69Omys3veF5wqVSqNHDlSFy9e1Jw5c+Ts7KzJkydb1pcsWVJVq1bVunXr1K5duzeugR7oV2jbtq12796t3bt3a+fOnVq+fLlSpUql9u3b68qVK2907KZNm75yKIHZbFaPHj00evRo+fj4aPny5VqxYoUqV66sXr16afbs2W90flvo2LGj/vjjD8vj3bt3y8fHx4YVAQAAAHgX3L17V/v371eTJk0s4ViSPvroI+3YsUM5c+ZU8eLF1apVK6v1WbJkkZOTU5wN46YH+hUcHR2VKVMmy+PMmTNr2LBhqly5sn788Ue1atUq3s69dOlS/fjjj1q1apWKFi1qWd65c2c9e/ZMU6ZMka+vr7JlyxZvNcS3F59bAAAAAHiZv/76S5GRkUqfPr369Omjn376SZJUvXp1DRo0SKlTp1bnzp2j7bd//37dv39fBQoUiJM66IGOpaRJn7/n4ODgIEkKDQ3VpEmT9OGHH8rV1VX16tXT1q1bLduvXbtW1atX1zfffKNSpUqpS5cucnFxkSQNGDBAfn5+MZ5n+fLlqlq1qlV4jtKqVSstWLBAGTNmjFUNUf8WK1ZMDRo00KFDhyzbhISEaMiQISpbtqxKliypgQMHqk+fPlb1HT58WM2aNZObm5uqVq2qYcOG6dGjR5b1v//+u5o2bSp3d3eVKVNG3bp1s/TURw2JDwwMVIsWLSQ9H8K9du1ay/7BwcGqW7eu3Nzc5OXlpenTp+vZs2eSpEuXLsnFxUVbt27VZ599pmLFisnLy0srVqx4bZsBAAAAeLdF3cP81VdfKXny5Jo+fbq+/PJL/fzzz+rYsaPMZnOM+wwePFiZM2fWxx9/HCd1EKBj4fr16xo+fLgcHR1VpUoVSVLv3r0VHByswYMHa8OGDfL29laPHj20bds2y34XLlzQjRs3FBwcrF69emn37t2Snjf+wIEDo50nLCxMp06dUsmSJWOsw8nJSaVLl7aEeCM1XL16VcuXL9e4ceO0bt06pUiRQn5+fpYXWv/+/bVnzx5NnDhRy5cv18OHD7V582bL/idPnlSbNm1UqVIlbdiwQePHj9exY8fUtm1bmc1mPXv2TB07dlSZMmW0YcMGLViwQFeuXNFXX30lSVq9erWyZs2qtm3baurUqdGuacGCBRo8eLAaNWqkDRs2qEePHgoKCtLo0aOttvP391enTp303XffqWrVqho6dKguXrz4+sYDAAAA8M56+vSpJKlo0aIaOXKkPD091aRJEw0dOlSHDx/Wnj17rLa/ceOGWrVqpRs3bigwMFCpUqWKkzoYwv0Ks2bN0rx58yRJERERCg8Pl7OzsyZNmqRs2bLp9OnT2r59u2bOnGmZGKtbt246efKkZs6cKW9vb8uxunTpopw5c1od38nJSU5OTtHOe//+fUlSmjRpXluj0RqePn2qYcOGqXDhwpKkNm3aqGvXrrp586bCwsK0detWzZ07V+XLl5f0/Ab9w4cPW84TFBSkChUqqFOnTpKkPHnyaMKECfL29tb+/ftVqFAh3b17V5kzZ1b27NmVM2dOTZo0yTKlfPr06ZUkSRI5Ojoqbdq0VtdgNps1Z84cNW/eXM2aNbMc/969exo3bpy6d+9u2bZ169b68MMPJUm9evXSt99+q6NHj0Z7bgEAAAAkHilTppQkVatWzWp5pUqVJEnHjx9XxYoVJT0f7t2pUyc9fvxYc+fOVfHixeOsDgL0KzRu3Ngy3NjOzk5p06a1Crx//fWXJKlUqVJW+5UpU0YBAQFWy/LkyWP4vGnTppXJZNLdu3dfu21sanB2drZ8H3UdT58+1fHjxyVJ7u7ulvXJkiWTm5ub5fHx48d1/vx5q22inD59WmXLllX79u01YsQITZkyReXKlVOVKlVUq1at117DnTt3dOvWrWjX4OHhoadPn+rMmTPKkCHDK68BAAAAQOIVlafCw8OtlkdEREiSkidPLkn69ddf1bVrVzk5Oenbb7+Ns3ufoxCgXyFNmjTKnTt3rPczm82We6WjRDWoEQ4ODipWrJhVD/CLHjx4oC+++EJffPFFrGqIGvL97+2SJEkiSYqMjHzp8SIjI1WnTh1LD/SL0qdPL0nq27evmjZtqh07dmjv3r0aMWKE5s6dq+Dg4BjP/WINLzunJKvreNk1AAAAAEi8nJ2dlT17dm3evFnNmzeXyWSSJG3fvl2SVLp0aR0/flydOnVSjhw5FBQUpCxZssR5HdwD/QaiJgN7cTIuSTp48KDy58//Rsdu2LChdu7cqWPHjkVbt2jRIh08eFA5cuSIkxpcXFxkMpn022+/WZaFh4dbnbtAgQL6559/lDt3bstXRESE/P39dfXqVZ05c0ZDhgxRhgwZ1KRJE02ZMkVz587V6dOndfLkyVeeP2PGjMqYMWOM12Bvb69cuXIZug4AAAAAiZPJZNKXX36p3377Tb169dIvv/yiRYsWadSoUapRo4aKFCmigQMHKiIiQt26ddPVq1f122+/Wb74GKsEwNnZWdWqVdOwYcNkMpmUO3dubd68Wdu3b9ekSZNeua+jo6NOnz6tu3fvKl26dNHWf/rpp9q+fbvatGmjHj16qEKFCgoNDdWGDRs0f/589e/f3/IRVv+1hig5c+ZUrVq1NGLECA0fPlyZMmXSrFmzdO3aNcs7O23btlWzZs00bNgwNW/eXA8ePNCwYcMUGhqqPHny6PHjx9q8ebNCQ0PVoUMH2dnZad26dUqTJo3y5csn6fl9C+fOndOtW7csM4hHadeunSZOnKicOXOqQoUK+v333xUYGKhGjRrJycnJcl84AAAAgPdTzZo1NWPGDE2bNk0dO3ZUmjRp1LhxY/Xq1UsXL1603Jr64hxKUerXrx9tguL/ggD9hgICAhQQEKCBAwfqwYMHKliwoKZOnarq1au/cr+2bdtaemhnzpwZbb2dnZ2mTZumJUuWaNWqVZowYYKSJk2qAgUKKDAw0DKR1pvU8KIRI0bom2++Ubdu3WQ2m1WnTh25u7vL3t5eklSiRAnNnTtXkydPVv369eXo6ChPT0/1799fDg4OcnBw0Jw5czRhwgQ1bNhQz549U4kSJTR//nzLjHctWrTQmDFj9Pfff2vDhg3Rng8HBwctXLhQo0aNUtasWfX555+rXbt2hq8BAAAAQOJWrVq1aBOJSc87BaPmh4pPJjM3kL73wsLCtGvXLpUrV85qevcaNWqobt266tq1qw2riz9//PGHJGngij917NxNG1cDAAAAvB+K5smkDd80sXUZVqKygaur6yu3owcacnBw0LBhw+Th4aEuXbooSZIkWr16ta5cuaKaNWvaujwAAAAASBCYRAwymUyaPXu27t69q0aNGql+/fo6cuSI5s2bZ/WxUQAAAADwPqMHGpKkwoULa968ebYuAwAAAAASLHqgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQAAAAAAAYQIAGAAAAAMAAAjQAAAAAAAYQoAEAAAAAMIAADQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABSW1dAGBrztnS27oEAAAA4L3xLv//mwCN997ELjVsXQIAAADwXnkWGakkdu/egOh3r2IgDoWHhyskJMTWZSCOhYSE6Pjx47RtIkTbJl60beJF2yZetG3i9Tba9l0MzxIBGpDZbLZ1CYhjZrNZISEhtG0iRNsmXrRt4kXbJl60beJF274cARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQOO9ZzKZbF0C4pjJZFKKFClo20SItk28aFsAwLsgqa0LAGzJwcFBKVKksHUZiGMpUqRQkSJFbF0G4gFtm3glhraNjDTLzo43AAAgMSNA4703NvigLtx+aOsyAADvsFwZnPTlx6VtXQYAIJ4RoPHeu3D7oU5fu2/rMgAAAAAkcNwDDQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQAAAAAAAYQIAGAAAAAMAAAjQAAAAAAAYQoAEAAAAAMIAADQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAMBGIiMjFRQUpI8++khubm6qW7euNmzY8NLtR40aJRcXl7dYIQDgRUltXQAAAMD7avLkyQoKClL37t3l6uqqHTt2qF+/frKzs5Ovr6/VtgcOHNCiRYtsVCkAQKIH+o14eXnJxcXF8lWoUCGVLFlSzZs314EDB974+IcOHdLBgwdfur5FixZW5y9atKgqVqyovn376tKlS9FqnTp16hvX9CaePn2qBQsWWB5PnTpVXl5etisIAAAbCgkJ0aJFi9SiRQt16NBBnp6e8vPzk4eHhxYvXmy17ePHjzVgwABlyZLFRtUCACQC9Btr27atdu/erd27d2vnzp1avny5UqVKpfbt2+vKlStvdOymTZvqwoULr9ymVq1alvNv3bpV48aN04ULF9S4cWOr869evVpt27Z9o3re1KZNm+Tv72953LZtW61evdqGFQEAYDsODg5atmxZtL/P9vb2CgsLs1o2duxYZcyYUQ0aNHibJQIA/oUA/YYcHR2VKVMmZcqUSZkzZ1bBggU1bNgwhYaG6scff4z38ydPntxy/hw5csjT01NBQUFKkiSJAgICLNulT59eKVOmjPd6XsVsNls9TpkypdKnT2+jagAAsK0kSZKoUKFCypQpk8xms27duqXZs2frl19+UdOmTS3b7dmzR+vXr5e/v7/s7PivGwDYEr+F40HSpM9vLXdwcJAkhYaGatKkSfrwww/l6uqqevXqaevWrZbt165dq+rVq+ubb75RqVKl1KVLF8sEIQMGDJCfn1+szu/k5KQGDRroxx9/VHh4uCTrIdwhISEaOHCgKlSoIFdXV3388cf64YcfLPu3aNFCgwcP1meffabSpUtrw4YN8vPzU4sWLazO8+KyS5cuycXFRcHBwfL19ZWbm5saNmyoQ4cOWa5xwIABkiQXFxft27cv2hDuq1evqm/fvqpQoYJKlCihdu3a6eTJk1bn8/Pz05gxY+Tp6anixYurY8eOun79eqyeHwAAEprNmzerQoUKmjBhgqpUqaK6detKkh4+fKiBAweqe/fuyps3r42rBAAQoOPY9evXNXz4cDk6OqpKlSqSpN69eys4OFiDBw/Whg0b5O3trR49emjbtm2W/S5cuKAbN24oODhYvXr10u7duyVJX331lQYOHBjrOgoWLKjQ0FCdO3cu2rrJkyfrr7/+0uzZs7VlyxZVrlxZvXr1srpvetWqVWrZsqWWLl2qSpUqGT7v6NGj1alTJ61bt0758uVT27ZtdfHiRfn4+Oirr76SJO3evVvu7u5W+z169EhNmjTR9evXNWPGDC1fvlzJkydX8+bNdfnyZct2mzZt0r1797RkyRLNmTNHx44d06RJk2L35AAAkMC4ublpyZIlGjx4sA4fPqz27dvLbDZr1KhRypo1q1q3bm3rEgEAYhbuNzZr1izNmzdPkhQREaHw8HA5Oztr0qRJypYtm06fPq3t27dr5syZqlq1qiSpW7duOnnypGbOnClvb2/Lsbp06aKcOXNaHd/JyUlOTk6xrit16tSSnr9z/W8XLlxQypQplTNnTqVOnVo9evRQmTJllCZNGss2hQsXVp06dWJ93g4dOlhmDR0xYoR+/fVXrVy5Un369LFcR6ZMmaLtt2HDBt29e1dr1661DOueMGGCvL299e233+rLL7+U9Pz5GD58uOzt7eXs7CwfHx/t2LEj1nUCAJCQ5MqVS7ly5VKZMmWUKlUq9e/fX9OmTdPmzZu1Zs0aRUZGWr6k5//nsLOzY0g3ALxlBOg31LhxY8swZjs7O6VNm9Yq8P7111+SpFKlSlntV6ZMGat7lCUpT548cVZXVHCOCtIv+vzzz9WpUyd5enrKzc1NFSpUUJ06dazqzp079386b9myZS3f29vbq1ixYjp16tRr9zt16pTy5MljdU908uTJ5ebmZrV/rly5ZG9vb3ns5OSkp0+f/qdaAQCwpTt37mjnzp2qVKmSMmTIYFlepEgRSc/fpA8PD4/2cVaSVLRoUdWvX1+jR49+a/UCAAjQbyxNmjT/KWyazWbLvdJRkidPHldl6dixY3J0dIwxlLu7u2vHjh3as2eP9u7dq+DgYM2YMUNz586Vp6en4VoiIiKiLfv3NT179szQu+P/nmAsSmRkpNUxo+4rBwDgXRcaGqr+/furd+/e6tixo2X5nj17JEnr1q1TSEiI1T4rV67UypUrtXr1aqVLl+6t1gsA4B7oeBc1GVjUZFpRDh48qPz588fLOR89eqTg4GDVrFnTqrc2ypQpU3To0CF9+OGHGjRokLZu3aqcOXNaTWz2b/b29nr06JHVsvPnz0fb7o8//rB8Hx4ermPHjqlo0aKSJJPJ9NLju7i46Ny5c7p9+7ZlWVhYmP788894e54AALClbNmy6ZNPPtG0adMUFBSkvXv3aurUqQoICNCnn36q/Pnzy9XV1eorc+bMkiRXV1flyJHDxlcAAO8feqDjmbOzs6pVq6Zhw4bJZDIpd+7c2rx5s7Zv3/7aya8cHR11+vRp3b1796XvMoeGhurmzZuSpKdPn+rMmTOaPn26zGazevbsGeM+Fy9e1IYNGzRixAjlypVLR48e1ZUrV6JN7PWiEiVKaPXq1dqwYYPc3d21YcMGnTp1Sm5ublbbTZo0SRkzZlSOHDk0c+ZMhYSEqGHDhpbrkRRjKK5Tp45mzZqlnj17ql+/fnJwcNC0adP05MkTNWrU6JXPEwAA76qhQ4cqZ86cWrlypS5fvqwPPvhA3bt3V7t27WxdGgAgBgTotyAgIEABAQEaOHCgHjx4oIIFC2rq1KmqXr36K/dr27at5s6dq9OnT2vmzJkxbvPdd9/pu+++k/R8+HSmTJnk7e2tgIAAZcmSJcZ9hgwZojFjxqhfv366d++esmfPrr59+6pevXovraVu3bo6ceKEvvnmG0VERKhWrVpq1aqVjhw5YrVdkyZNNGbMGF25ckXFixfX4sWLLe+WlytXTsWLF1fjxo01btw4q/2cnJy0ZMkSjR492jLTaKlSpbRs2bJoE6sBAJBYODg4qHPnzurcubOh7bt166Zu3brFc1UAgJcxmV928ykQC5cuXdKHH36oRYsWWU0klpBFDTeftf+WTl+7b+NqAADvMuesaRTYrpqty0iQnjx5ohMnTqhw4cKW0WhIHGjbxOt9bNuobODq6vrK7bgHGgAAAAAAAwjQAAAAAAAYwD3QiBM5cuSwfOY1AAAAACRG9EADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQAAAAAAAYQIAGAAAAAMAAAjQAAAAAAAYQoAEAAAAAMIAADQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAAOSxnaHWbNm6eOPP1aWLFniox7grcuVwcnWJQAA3nH8LQGA90OsA/ScOXM0ZcoUeXp6qkGDBvL29paDg0N81Aa8FV9+XNrWJQAAEoHISLPs7Ey2LgMAEI9iPYR79+7d8vf3l9lsVt++fVWpUiUNGzZMv//+e3zUB8Sr8PBwhYSE2LoMxLGQkBAdP36ctk2EaNvEKzG0LeEZABK/WPdAJ0+eXHXr1lXdunV17do1rV+/Xt9//72WL1+u/Pnzq0GDBqpXr57Sp08fH/UCcc5sNtu6BMQxs9mskJAQ2jYRom0TL9oWAPAueKNJxLJmzao2bdqoS5cuKl26tP7++2+NHTtWVatW1dChQ/Xo0aO4qhMAAAAAAJuKdQ90lP3792v9+vXaunWrnjx5onLlyikgIECVK1fWzp07NXz4cF25ckWzZ8+Oy3oBAAAAALCJWAfoiRMnauPGjbp69ao++OADtW7dWg0aNFC2bNks2/j4+Oivv/7SokWL4rRYAAAAAABsJdYBev78+fL29taIESNUvnx5mUwxT5jh6uqqnj17vml9AAAAAAAkCLEO0B07dlTNmjXl7Oz8yu28vb3/c1EAAAAAACQ0sZ5EbM6cObp06VJ81AIAAAAAQIIV6wDt7Oyss2fPxkctAAAAAAAkWLEewl2tWjUFBARo165dcnFxkaOjo9V6k8mkrl27xlmBAAAAAAAkBLEO0IGBgZKkPXv2aM+ePdHWE6ABAAAAAIlRrAP0yZMn46MOAAAAAAAStFgH6BedPn1aDx8+VPr06ZUrV664qgkAAAAAgATnPwXoTZs2acyYMbp165ZlWcaMGdWnTx99/PHHcVUbAAAAAAAJRqwD9E8//aR+/fqpXLly6t27tzJmzKgbN25ow4YNGjBggNKmTauqVavGQ6kAAAAAANhOrAP0jBkzVLNmTU2cONFq+SeffKJevXpp1qxZBGgAAAAAQKIT68+BPnXqlOrXrx/juvr16zPJGN45JpPJ1iUgjplMJqVIkYK2TYRo28SLtgUAvAti3QOdLl063b9/P8Z19+7dk4ODwxsXBbwtDg4OSpEiha3LQBxLkSKFihQpYusyEA9o28QrIbZtpNksOwI9AOAFsQ7Qnp6eCgwMVJkyZZQ1a1bL8qtXr2ratGmqUKFCnBYIxLcV+07r5sMQW5cBAEhAMjmlUKOyzrYuAwCQwMQ6QPfu3VuffPKJPvroI7m7uytjxoy6deuWjhw5ojRp0qhPnz7xUScQb24+DNGVe09sXQYAAACABC7W90BnypRJ69atU4sWLRQSEqI///xTISEhatGihdatW6fs2bPHR50AAAAAANjUf/oc6AwZMqhfv35xXQsAAAAAAAlWrAN0YGDgS9fZ2dnJ0dFRuXPnVoUKFZhQDAAAAACQaMQ6QG/YsEHXrl1TeHi4kiZNqrRp0+revXuKiIiQyWSS2WyWJOXPn1+LFi1S+vTp47xoAAAAAADetljfA92jRw85ODgoICBAv//+u3bv3q0//vhDgYGBSpcunSZNmqSNGzfKZDIpICAgPmoGAAAAAOCti3WAnjp1qnr27CkfHx/Z2T3f3WQyydvbW927d9fkyZNVoEABderUSTt27IjzggEAAAAAsIVYB+irV68qd+7cMa7Lnj27Ll++LEnKkiWL7t+//2bVAQAAAACQQMQ6QOfPn1+rVq2Kcd3q1auVN29eSdK5c+eUOXPmN6sOAAAAAIAEItaTiHXr1k1du3ZV/fr19dFHHylDhgy6deuWtm3bpr/++ktTpkzR8ePHNW7cOH3yySfxUTMAAAAAAG9drAN01apVFRQUpKlTpyowMFDPnj1T0qRJVapUKS1cuFClS5fWTz/9pNq1a6tnz57xUDIAAAAAAG9frAO0JJUrV07lypVTeHi47t+/rwwZMlgmFJMkLy8veXl5xVmRAAAAAADY2n8K0JK0Y8cO/fLLL7p586Z69eqlEydOqGjRosqePXtc1gcAAAAAQIIQ6wAdEhKirl276pdfflGqVKn0+PFjtWvXTsuWLdPx48e1ZMkSFShQID5qBQAAAADAZmI9C3dAQICOHTumBQsW6Ndff5XZbJYkjRkzRlmyZNHkyZPjvEgAAAAAAGwt1gH6u+++U+/evVWuXDmZTCbL8syZM6tz5846dOhQnBYIAAAAAEBCEOsA/eDBg5fe55wmTRo9efLkjYsCAAAAACChiXWALlCggDZu3Bjjup9++on7nwEAAAAAiVKsJxHr3LmzvvjiC927d0/VqlWTyWTSgQMHtHbtWi1fvlwTJkyIjzoBAAAAALCpWAdob29vjRs3ThMmTNCOHTskSaNHj1aGDBk0dOhQ1axZM86LBAAAAADA1v7T50DXqVNHderU0ZkzZ3Tv3j2lTp1a+fLlk51drEeEAwAAAADwToh14m3ZsqVOnz4tScqXL59Kliyp/Pnzy87OTidPnlSdOnXivEgAAAAAAGzNUA/0wYMHLZ/3vH//fh04cEB37tyJtt3PP/+sixcvxm2FAAAAAAAkAIYC9KpVq7R+/XqZTCaZTCYNGzYs2jZRAdvX1zduKwQAAAAAIAEwFKAHDRqkTz75RGazWa1atdLXX3+t/PnzW21jZ2en1KlT8zFWAAAAAIBEyVCAdnJykoeHhyRp0aJFKlKkiFKlShWvhQEAAAAAkJDEehZuDw8PXb9+XTt37lR4eLhleWRkpEJCQnTw4EFNnDgxTosEAAAAAMDWYh2gv//+e/Xt21cREREymUySnt//HPV9vnz54rZCAAAAAAASgFh/jNXMmTNVtGhRrV27Vg0aNFC9evW0efNm9evXT0mSJNFXX30VH3UCAAAkeJGRkQoKCtJHH30kNzc31a1bVxs2bLDaZu3atfL19ZWbm5tq1KihRYsWWSZjBQAkbLHugT579qwmTJigIkWKqGzZspo3b56cnZ3l7OysW7duaebMmapQoUJ81AoAAJCgTZ48WUFBQerevbtcXV21Y8cO9evXT3Z2dvL19dWqVas0aNAgtW/fXhUrVtTRo0c1evRoPXnyRJ06dbJ1+QCA14h1gLazs1OaNGkkSblz59aZM2cUGRkpOzs7Va5cWevWrYvzIhMTLy8vXb582fLYZDLJ0dFRRYoUUY8ePVSmTJk3Ov6hQ4dkNptVunTpNy1VknT37l1t27ZNn3322Su3mzVrlq5cuRLjR5y1aNFC+/fvt1pmb2+vjBkzysvLS/369VOKFCkkPX9+6tevr27duhmq78qVKzpy5Ihq165t8IoAAIgfISEhWrRokVq0aKEOHTpIkjw9PXXs2DEtXrxYvr6+mjlzpmrUqKF+/fpZ1p87d05LliwhQAPAOyDWATpfvnw6fPiwypQpo3z58ik8PFwnT55UkSJF9ODBA6uJxRCztm3bqm3btpKe3z9+7949BQQEqH379vruu++ULVu2/3zspk2byt/fP84C9NixY3Xp0qXXBugdO3aoffv2L11fq1YtDRw40PL4yZMn2r17t/z9/RUZGamhQ4dKklavXq1kyZIZrq9///7Knj07ARoAYHMODg5atmyZMmTIYLXc3t5eDx8+lCTNnj072t85e3t7hYWFvbU6AQD/XawDdOPGjTVkyBA9efJEvXr1Urly5TRgwAB9+umnWrJkiYoWLRofdSYqjo6OypQpk+Vx5syZNWzYMFWuXFk//vijWrVqZcPqrBm5J+vBgwc6ceKEypUr99JtkidPbnXN0vMRDH/++ae2bNliCdDp06d/o3oBALCVJEmSqFChQpKe//28ffu21q5dq19++UXDhw+XJDk7O1vW379/Xz/++KOCg4Mtb6wDABK2WE8i9tlnn2ngwIGWnuYRI0YoLCxMI0eOVEREhFUvI4xLmvT5exkODg6Sng9lHjNmjHx8fFS2bFnt379fz54904IFC1SjRg25urqqRo0aWrZsmeUYLi4ukqQBAwbIz89PknT9+nX16tVLpUuXVtmyZdWpUyedO3fOss/t27fVvXt3lS1bVm5ubmrcuLFluLWfn5/WrVun/fv3W44dk927d8vd3V2Ojo6xvu5kyZJZrj3quqdOnWp5/L///U8NGzaUu7u7KlasKH9/f4WGhkr6/6Hh69atk5eXV6zPDQBAfNm8ebMqVKigCRMmqEqVKqpbt67V+t9++01ly5bVoEGDVLBgQbVp08ZGlQIAYiPWPdCS1KxZM8v3OXPm1Hfffae7d+/Se/gfXb9+XaNGjZKjo6OqVKliWb5kyRLNmjVLTk5OcnFx0ejRo7V+/XoNHjxYrq6u2rlzp0aOHKmwsDC1bt1au3fvVsWKFfXVV1+pQYMGevLkiVq0aKGiRYtqyZIlsrOz0/z589WwYUNt3LhRWbJk0dChQxUeHq4lS5bIwcFBM2fOVJcuXbRz504NHDhQoaGhunbtmlWo/bcdO3aocuXKsbrmiIgI7d69W+vXr1fjxo1j3ObHH39U9+7d1a1bN40ZM0ZnzpzR0KFDdfHiRU2fPl1Tp05Vp06dlDVrVn399dexOj8AAPHJzc1NS5Ys0V9//aXJkyerffv2Wrx4seVjP7Nly6bFixfr0qVLmjRpkho3bqx169ZZ5gQBACRMsQrQd+7c0aNHj5QrVy6r5YsXL5aPj0+cFpaYzZo1S/PmzZP0PEiGh4fL2dlZkyZNsrr/uUqVKipfvrwk6dGjR1q2bJn8/PxUp04dSVKePHl06dIlzZ49W61atbIMkXZycpKTk5NWrVqlBw8eaNy4cZZe3pEjR2rfvn1auXKlunXrpgsXLqhgwYLKmTOnkidProEDB6pOnTpKkiSJHB0dlTx5ctnb20cbfh3FbDZr9+7d6tix4yuveePGjdq6davlcWhoqLJly6Z27dq9dNKU2bNnq3r16urSpYskKW/evDKbzeratav++ecf5c+fX/b29kqePDlv3gAAEpRcuXIpV65cKlOmjFKlSqX+/fvr4MGDlslCs2TJoixZssjDw0M5c+ZU8+bNtXXrVn388ce2LRwA8EqGh3AHBwfLy8tLy5cvt1p+7do1jRo1Sl5eXvruu+/ivMDEqHHjxgoODlZwcLC2bNmigwcPasuWLVa9z9Lze4SjnDlzRk+fPlWpUqWstvHw8NDt27d1+/btaOc5fvy47t+/rzJlysjd3V3u7u4qVaqUrl27ptOnT0uSvvjiC/3444/y8PBQmzZttGLFCjk7OxueyOvPP/9U8uTJlS9fvldu5+XlpeDgYK1bt07Dhg1T6tSpVb58eXXq1MlqCPeLTp06pZIlS0a73qh1AAAkJHfu3FFwcHC0v8lFihSR9PyTIzZu3Kjz58/HuP7GjRtvp1AAwH9mqAf60KFD+uqrr1ShQgXVq1fPal3WrFm1bt06jR8/Xn369FGOHDnk6uoaL8UmFmnSpLEKxy+TPHlyy/cvm8wrMjJSkmIMoZGRkcqbN69mzJgRbV3U/crVq1fXrl27tGvXLv3yyy+aP3++AgMDtXLlShUoUOC1Ne7YsSNa8I9JypQpLdecJ08eZc6cWW3atFGSJEksE4j9W0zX/KrrBQDAlkJDQ9W/f3/17t3bamTWnj17JElFixbVJ598onr16lkmFXtx/avmGwEAJAyGeqDnzJmjcuXKac6cOTH+ci9cuLDmzJmjYsWKadasWXFeJJ7P2mlvb69Dhw5ZLT948KAyZcpk+WzuFxUsWFBXrlyRk5OTcufOrdy5cytbtmyaMGGCDhw4oPDwcPn7++vixYvy8fHRN998o23btsnOzk7/+9//JMlyr9bL7Ny5M9b3P0tSuXLl1KZNGy1btkw7d+6McRsXFxcdPnw42vVK/z+LKQAACUW2bNn0ySefaNq0aQoKCtLevXs1depUBQQE6NNPP1X+/PnVoUMHrVy5UpMmTdLevXu1YMECffXVVypfvvx/+nsKAHi7DAXoY8eOqVGjRq8+kJ2dmjVrpj///DNOCoO1VKlSqVGjRpoyZYo2bdqk8+fP69tvv9XSpUvVtm1bS9B1dHTU6dOndffuXdWtW1dp0qRR9+7ddfToUZ0+fVp+fn7auXOnXFxc5ODgoD/++EODBw/Wb7/9pkuXLmnt2rV68uSJ3N3dLce7ceOGLl68GK2mO3fu6NSpU6/8+KpX6dGjh/LkyaOhQ4fq8ePH0da3b99eP/zwg6ZPn66zZ8/q559/1ogRI1StWjVLgE6ZMqUuX76sa9eu/acaAACIS0OHDlXnzp21cuVKff7559qwYYO6d++uESNGSJK6dOmiIUOGaNu2berYsaMWLFigxo0ba+bMma990xoAYHuGxsE+fPhQadOmfe12H3zwge7du/eGJeFlBgwYoHTp0mn8+PG6deuW8uTJo6+//loNGza0bNO2bVvNnTtXp0+f1syZM7VkyRKNHTtW7dq107Nnz1S0aFHNmzfPEkAnTpwof39/de7cWQ8fPlS+fPk0fvx4lS5dWpL08ccf68cff5Svr69++OEHZcmSxXKu3bt3q1SpUlZDzWMjWbJkGjFihFq2bKmJEydq0KBBVutr1KihgIAAzZgxQ9OnT1f69Onl6+ur7t27W7Zp3Lix+vfvr7p162rv3r1KkiTJf6oFAIC44ODgoM6dO6tz584xrjeZTGrSpImaNGnylisDAMQFk/llN9e+oFatWmrVqtVLP24oysqVKzV79mxt27YtzgoE4ssff/whSdpx3aQr957YuBoAQEKSLa2jvvAuZusyEoUnT57oxIkTKly4sGUOFiQOtG3i9T62bVQ2eN18XoaGcFerVk2LFy9WeHj4S7cJCwvT4sWLVbZs2ViUCQAAAADAu8FQgG7durXu3Lmj1q1bx3iP87Fjx9SuXTtdunRJbdu2jfMiAQAAAACwNUP3QGfOnFmBgYHq1auXPvvsM2XIkEE5cuTQs2fPdPXqVd2+fVsZMmRQYGAgsyMDAAAAABIlwx+mW6pUKW3cuFHr1q3T7t27de3aNSVJkkSurq6qWLGi6tWrp1SpUsVnrQAAAAAA2IzhAC1JadKkUevWrdW6det4KgcAAAAAgITJ0D3QAAAAAAC87wjQAAAAAAAYQIAGAAAAAMAAAjQAAAAAAAbEOkAfOHBAjx8/jnHdgwcPtHnz5jcuCgAAAACAhCbWAbply5Y6ffp0jOuOHz+uAQMGvHFRAAAAAAAkNIY+xqp///66evWqJMlsNmvo0KExfubzuXPnlDFjxritEAAAAACABMBQD3SNGjVkNptlNpsty6IeR33Z2dmpRIkS8vf3j7diAQAAAACwFUM90F5eXvLy8pIktWjRQkOHDpWzs3O8FgYAAAAAQEJiKEC/aPHixfFRBwAAAAAACVqsA3RoaKhmzJihn3/+WSEhIYqMjLRabzKZtG3btjgrEAAAAACAhCDWAXrkyJFavXq1PDw8VLhwYdnZ8VHSAAAAAIDEL9YB+ocfflCvXr3UoUOH+KgHAAAAAIAEKdbdx0+fPpWbm1t81AIAAAAAQIIV6wBdsWJF7dy5Mz5qAQAAAAAgwYr1EG4fHx8NGTJEd+7cUfHixZUiRYpo23z88cdxURsAAAAAAAlGrAN0z549JUnBwcEKDg6Ott5kMhGgAQAAAACJTqwD9Pbt2+OjDgAAAAAAErRYB+js2bNbPQ4LC5ODg4NMJlOcFQUAAAAAQEIT6wAtSWfOnNGUKVP0yy+/6NGjR1q1apVWr16tfPnyqUWLFnFdIwAAAAAANhfrWbhPnDihTz/9VMeOHVOdOnVkNpslSUmSJNGoUaO0bt26OC8SAAAAAABbi3UP9JgxY1SsWDHNmzdPkvTtt99KkgYNGqSwsDAtWrRI9evXj9sqAQAAAACwsVj3QP/2229q3bq1kiZNGu2+Zx8fH507dy6uagMAAAAAIMGIdYBOliyZQkNDY1x37949OTg4vHFRAAAAAAAkNLEewl2hQgVNmTJFJUuWVKZMmSQ9/+znx48fa968eSpfvnycFwnEp0xOKWxdAgAggeFvAwAgJrEO0P369VOjRo1Us2ZNFSpUSCaTSaNHj9bZs2dlNpsVEBAQH3UC8aZRWWdblwAASIAizWbZ8TGdAIAXxHoI9wcffKD169erVatWMpvNypUrl548eSJfX1+tXbtWOXPmjI86gXgRHh6ukJAQW5eBOBYSEqLjx4/TtokQbZt4JcS2JTwDAP4t1j3Qd+7cUfr06dWrV6/4qAd466I+ig2Jh9lsVkhICG2bCNG2iRdtCwB4F8S6B7py5crq3Lmzvv/+e4WHh8dHTQAAAAAAJDixDtB9+/bV7du31bNnT1WoUEGDBg3SwYMH46M2AAAAAAASjFgP4W7durVat26tixcvatOmTdqyZYtWr16tbNmyqW7duqpTp46cnZmUCQAAAACQuMS6BzpKzpw51blzZ23cuFEbN25U1apVNWfOHPn6+sZlfQAAAAAAJAix7oF+0e3bt/Xdd9/pu+++05EjR5Q2bVr5+PjEVW0AAAAAACQYsQ7QDx8+1NatW7V582YdOHBASZIkkZeXl6ZPn65KlSopSZIk8VEnAAAAAAA2FesA7enpqcjISJUqVUpDhw5VzZo1lSpVqvioDQAAAACABCPWAbpbt26qU6eOsmXLFh/1AAAAAACQIMV6ErGOHTu+NDyHhobq5MmTb1wUAAAAAAAJjaEAXbFiRZ04ccJq2fz583Xnzh2rZX/99Zfq168fd9UBAAAAAJBAGArQt27d0tOnTy2Pnz17prFjx+rq1avxVhgAAAAAAAnJf/4caLPZHJd1AAAAAACQoP3nAA0AAAAAwPuEAA0AAAAAgAEEaAAAAAAADHijAG0ymeKqDsBmeB0nPiaTSSlSpKBtEyHaFgAA2FJSoxt27dpVDg4OVss6deoke3t7y+Pw8PC4qwx4CxwcHJQiRQpbl4E4liJFChUpUsTWZSAe0La2ZTabefMCAPBeMxSg+WxnJGZHzt3Qw9Cnr98QAN5jTsnt5Z4ns63LAADApgwFaH9///iuA7CZh6FP9SCE0RMAAAAAXo1JxAAAAAAAMIAADQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQAAAAAAAYQIAGAAAAAMAAAjQAAAAAAAYQoAEAAAAAMIAADQAAAACAAUltXQAAAEjcIiMjtWLFCi1dulSXLl1S+vTp9eGHH6p79+5KlSqVJOnw4cMaO3asLl26pNSpU8vb21s9e/a0rAcAICEgQAMAgHg1d+5cTZo0Se3atZOnp6fOnj2rKVOm6O+//9a8efP0zz//qHPnzipQoIDGjBmje/fuafz48bp06ZJmzpxp6/IBALCw+RBuLy8vubi4aP78+TGu//rrr+Xi4qKpU6dKktauXSsXF5e3UtulS5fk4uKiffv2SZL8/PzUokWLt3JuW4p6jl/2FRQU9NZquXv3rlatWvXWzgcAiFuRkZGaM2eOGjVqpD59+qh8+fJq1qyZhgwZol9++UV//vmnNm7cKJPJpD59+qhChQr67LPP1KtXL/3888+6fPmyrS8BAACLBNEDbW9vr61bt6pNmzZWyyMiIvTDDz/IZDJZlvn4+KhSpUpvu8T30u7du2Nc/jaH00UN5/vss8/e2jkBAHHn0aNHqlevnmrVqmW1PF++fJKkixcvKiwsTEmTJpWDg4Nlfdq0aSVJ9+7dU/bs2d9avQAAvEqCCNCenp7atWuXrl27pqxZs1qW//rrr3J0dFSKFCksy5InT67kyZPbosz3TqZMmWxdgsxms61LAAC8gdSpU2vQoEHRlm/btk2SlD9/fuXPn1+rVq3SkiVL1L9/f12+fFnTpk1TwYIFVahQobddMgAAL2XzIdyS5ObmpmzZsun777+3Wr5lyxbVqlXLqgf630O4d+zYoQYNGqh48eLy9PSUn5+f7t+/b1l//vx5de7cWaVKlVLZsmXVu3dv3b5927J+zZo1qlWrltzc3FSrVi0tXLhQkZGRhuo+ePCgWrZsqZIlS6pYsWKqVauW1q9fb1nv5+cnPz8/jRkzRp6enipevLg6duyo69evW7a5fv26evXqpdKlS6ts2bLq1KmTzp07Z3We4OBg1a1bV25ubvLy8tL06dP17NkzSdGHmce07Pbt2+revbvKli0rNzc3NW7cWPv37zd0jS9z8eJFFSpUSDt27LBaPmDAADVp0kSSFB4ernHjxqlSpUpyd3dXw4YNrXq1165dq+rVq1v+LVasmBo0aKBDhw5Znr9169Zp//79ljY/d+6c2rVrp1KlSsnd3V3t2rXTX3/99UbXAgB4u44eParZs2erWrVqKliwoAoWLKgePXpo69atqlatmnx9ffX48WPNnj1bSZIksXW5AABYJIgALUm1atWyCtDh4eHatm2bateu/dJ97ty5oy+++EKffPKJtmzZosDAQB04cEBjx46VJD148EDNmjVTeHi4Fi5cqPnz5+vChQvq2bOnJGnFihUaO3asvvjiC23evFk9e/bUnDlzNH78+NfWe/36dbVr106urq5at26dgoOD5ebmpoEDB+rWrVuW7TZt2qR79+5pyZIlmjNnjo4dO6ZJkyZJkp48eWK5p3rJkiVavHix0qVLp4YNG1pC9oIFCzR48GA1atRIGzZsUI8ePRQUFKTRo0cbfm6HDh2qsLAwLVmyRBs3blTevHnVpUsXPXnyxPAx/i1nzpwqU6aMNm3aZFkWFhamH374QQ0aNJD0PEzv2bNH48eP17p161SrVi116tRJ//vf/yz7XL16VcuXL9e4ceO0bt06pUiRQn5+fjKbzRo4cKBq1aold3d3S/Du3bu3smTJojVr1mjVqlWys7PTF1988Z+vAwDwdh06dEjt27dXjhw55O/vL0maPXu2Ro0aJW9vb82aNUsTJ05UypQp1bp1a6u/qQAA2FqCGMItPQ/QQUFBun79urJkyaI9e/Yoffr0KlKkyEv3uX79usLDw5UtWzZlz55d2bNn18yZMy29s1u2bNHjx48VEBCgNGnSSJK++eYbbd68WeHh4Zo+fbo6d+5sCek5c+bUo0ePNGzYMPXo0eOV9YaFhalbt25q166dpYe8Q4cOCg4O1rlz55QxY0ZJkpOTk4YPHy57e3s5OzvLx8fH0mu7efNmPXjwQOPGjVPSpM+bYuTIkdq3b59WrlypL774QnPmzFHz5s3VrFkzSVKePHl07949jRs3Tt27dzf03F64cEEFCxZUzpw5lTx5cg0cOFB16tR57bv67u7uMS7fs2ePHB0d1aBBAw0fPlwhISFKkSKFfvrpJz179ky1atXS+fPntWnTJgUHB6tw4cKSpDZt2ujkyZMKCgpS1apVJUlPnz7VsGHDrLbp2rWrbt68qcyZMyt58uSyt7e3DCe/cOGCypcvr+zZs8ve3l6jRo3SmTNnFBkZKTu7BPN+EAAgBlu2bJGfn5/y5MmjuXPnKl26dIqIiND06dPl4+Oj5s2bq3DhwnJ0dFTZsmXl7e2toKAg9e/f39alAwAgKQEF6GLFiilnzpzaunWrWrZsqS1btryy91mSChcuLF9fX3Xq1EmZMmVShQoVVLVqVVWvXl2SdOrUKeXJk8cSniWpUKFCKlSokO7cuaNr164pICBAkydPtqyPjIxUWFiYLl26pGTJkr303Lly5VKDBg20aNEinTp1ShcuXNDJkyclyRLgo7azt7e3PHZyctLTp08lScePH9f9+/dVpkwZq2OHhYXp9OnTunPnjm7duqVSpUpZrffw8NDTp0915swZZciQ4ZXPkSR98cUX6tevn7Zu3apSpUqpYsWK8vX1feX1Sc+Hjsck6p70GjVqaPjw4dq+fbt8fX21YcMGeXt7K1WqVNq1a5ckqWnTplb7Pn36VKlTp7Za5uzsbPneycnJsl1MevXqpVGjRmnp0qXy8PBQpUqV5OvrS3gGgAQuKChI48aNk4eHh6ZNm2b5fX/nzh2FhISoePHiVttnyJBBefPm1d9//22LcgEAiFGCCdDS/w/jbtSokbZv327o44smTJigrl27aufOnfrll1/Ur18/lSpVSgsXLrT06sYk6j7nAQMGqHz58tHWf/DBB7px48ZL9//nn3/UtGlTFS1aVOXLl9dHH32kdOnSRZst+sUZRWOqIW/evJoxY0a0dY6Oji+dQCuq9pdd34sBXpKqV6+uXbt2adeuXfrll180f/58BQYGauXKlSpQoMBL68udO/dL10XVWLNmTW3cuFEVK1bUrl27NHv2bEn/P/nXt99+q5QpU1rt9++wG9Nz9LJrb9asmWrWrKkdO3Zo7969mjJlimbMmKHg4GBLrz8AIGFZvny5xo4dKx8fH40ZM8bq936GDBmUNm1aHTlyRK6urpbld+7c0blz56IFawAAbClBddvVqlVLhw8f1po1a5QzZ06rnsmYHD16VKNGjVK+fPnUunVryz1Uv/76q27fvq38+fPr3LlzevjwoWWfY8eOydPTU0+fPlX69Ol18eJF5c6d2/L14j3Kr7J8+XJlyJBB8+fP1+eff64qVapY7tMyOnN0wYIFdeXKFTk5OVnOny1bNk2YMEEHDhxQxowZlTFjRsukWlEOHjwoe3t7q97tR48eWda/OAlZeHi4/P39dfHiRfn4+Oibb77Rtm3bZGdnZ3Uv8n/1ySefaM+ePZYAW65cOUmyBPObN29aPb9r167V2rVrDR//xQnkbt++reHDh+vp06dq0KCBxo0bpw0bNujmzZtvPCkaACB+3Lx5U/7+/sqePbuaNWum48eP67fffrN83b9/X926ddP333+voKAg7du3T1u2bFGbNm2UJEkStW3b1taXAACARYLqgS5cuLBy586tCRMmqGPHjq/dPlWqVFq6dKns7e3VsGFDhYWFacuWLcqTJ4/SpUunOnXqaPr06erXr5969uypiIgIDR06VAULFtQHH3ygzz//XBMnTlS2bNlUuXJl/fXXXxo6dKg+/PDDV/YcS1LWrFl17do17dixQ/nz59exY8f0zTffSHoeWo2oW7euZs+ere7du6tfv35KlSqVpk+frp07d1ruwW7Xrp0mTpyonDlzqkKFCvr9998VGBioRo0aycnJSalSpVL27Nm1cOFCy/3RkydPtgRPBwcH/fHHHzp48KAGDx6sjBkzaufOnXry5MlL73GOcvPmzRiXJ0uWzDIMu3Tp0vrggw80ZcoUtWjRwtK7XKBAAVWrVk1DhgzR119/rQIFCuj777/XrFmzLJPGGOHo6KgbN27o4sWL+uCDD/S///1PFy5cUJ8+fZQqVSqtXbtW9vb2KlasmOFjAgDenh07dig0NFSXL1+2zOfxIn9/fzVv3lzJkiXTnDlz1K1bN6VLl06lS5dWYGCgcubMaYOqAQCIWYIK0NLzXugZM2bIx8fntds6Oztr6tSpCgwM1NKlS2VnZ6dy5cppzpw5srOzU4oUKRQUFCR/f381btxYyZMnV9WqVS2TkbRt21bJkiXT4sWLNXr0aGXMmFENGzY0NDlXy5YtdebMGX355ZcKDw9Xnjx51Lt3b02ZMkV//PGHKleu/NpjODk5acmSJRo7dqzatWunZ8+eqWjRopo3b56l971t27ZycHDQwoULNWrUKGXNmlWff/652rVrJ+l5D+3YsWM1atQo1atXT7lz59aAAQPUoUMHy3kmTpwof39/de7cWQ8fPlS+fPk0fvx4lS5d+pX1VaxYMcblVatW1axZsyyP69evr8mTJ1tm337xvBMnTtTXX3+t+/fvK1euXBo5cqTq16//2ucmyscff6wff/xRvr6++uGHHzRnzhyNGTNGrVu3VkhIiAoXLqzZs2crV65cho8JAHh7Pv30U3366aev3a527drKly+fZRIxAAASIpPZ6HhjIJH5448/JEl37dPrQYixUQMA8L5KncJBlQtlj7fjP3nyRCdOnCBAJ0K0beJF2yZe72PbRmWDF+fjiEmCugcaAAAAAICEigANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQAAAAAAAYQIAGAAAAAMAAAjQAAAAAAAYQoAEAAAAAMIAADQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQAAAAAAAYkNTWBQC25pTc3tYlAECCx+9KAAAI0IDc82S2dQkA8E4wm80ymUy2LgMAAJthCDfea+Hh4QoJCbF1GYhjISEhOn78OG2bCNG2tkV4BgC87wjQeO+ZzWZbl4A4ZjabFRISQtsmQrQtAACwJQI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQeO+ZTCZbl4A4ZjKZlCJFCto2EaJtAQCALSW1dQGALTk4OChFihS2LgNxLEWKFCpSpIity0A8oG3jltls5s0IAABigQCN9961u08UHhFp6zIA4K1ySGqnrOkcbV0GAADvFAI03nvhEZEKI0ADAAAAeA3ugQYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQAAAAAAAYQIAGAAAAAMAAAjQAAAAAAAYQoAEAAAAAMIAADQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwIKmtCwAAAO+WyMhIrVixQkuXLtWlS5eUPn16ffjhh+revbtSpUolFxeXl+7r4eGhxYsXv8VqAQCIOwRoAAAQK3PnztWkSZPUrl07eXp66uzZs5oyZYr+/vtvzZs3TytWrIi2zw8//KCgoCA1adLEBhUDABA3CNA25OXlpcuXL1sem0wmOTo6qkiRIurRo4fKlCnzRsc/dOiQzGazSpcu/crt1q1bp1WrVunUqVOSpAIFCqh169aqUaOGVa3169dXt27d3qgmAMC7LTIyUnPmzFGjRo3Up08fSVL58uWVLl069erVS3/++adKlChhtc/Vq1e1atUqNWvWTD4+PjaoGgCAuME90DbWtm1b7d69W7t379bOnTu1fPlypUqVSu3bt9eVK1fe6NhNmzbVhQsXXrrebDarR48eGj16tHx8fLR8+XKtWLFClStXVq9evTR79uw3Oj8AIPF59OiR6tWrJ19fX6vl+fLlkyRdvHgx2j6jR49WsmTJ1Lt377dSIwAA8YUeaBtzdHRUpkyZLI8zZ86sYcOGqXLlyvrxxx/VqlWreDv30qVL9eOPP2rVqlUqWrSoZXnnzp317NkzTZkyRb6+vsqWLVu81QAAeLekTp1agwYNirZ827ZtkqT8+fNbLf/tt9/0/fffy9/fX6lSpXorNQIAEF/ogU6AkiZ9/r6Gg4ODJCk0NFSTJk3Shx9+KFdXV9WrV09bt261bL927VpVr15d33zzjUqVKqUuXbpYJnAZMGCA/Pz8YjzP8uXLVbVqVavwHKVVq1ZasGCBMmbMGOO+R44cUcuWLVWqVCmVLVtWAwYM0N27dy3rf//9dzVt2lTu7u4qU6aMunXrZulRv3TpklxcXLRv3z7L9v9e5ufnp+7du6tt27YqWbKk5syZI0n6+eef1aBBA7m5ual69eqaNGmSwsPDjT2xAIB4cfToUc2ePVvVqlVTwYIFrdbNnTtX2bNnV926dW1UHQAAcYcAncBcv35dw4cPl6Ojo6pUqSJJ6t27t4KDgzV48GBt2LBB3t7e6tGjh+Xdfkm6cOGCbty4oeDgYPXq1Uu7d++WJH311VcaOHBgtPOEhYXp1KlTKlmyZIx1ODk5qXTp0pYQ/6Lff/9dLVq0UIECBbRy5UpNnjxZR48eVbt27fTs2TM9e/ZMHTt2VJkyZbRhwwYtWLBAV65c0VdffRWr52Lr1q0qX7681qxZI19fX+3cuVM9e/ZUw4YNtWnTJg0ZMkTfffed+vXrF6vjAgDizqFDh9S+fXvlyJFD/v7+VuuuXbum7du3q1WrVpY3hwEAeJfx18zGZs2apXnz5kmSIiIiFB4eLmdnZ02aNEnZsmXT6dOntX37ds2cOVNVq1aVJHXr1k0nT57UzJkz5e3tbTlWly5dlDNnTqvjOzk5ycnJKdp579+/L0lKkyZNrGueN2+eXFxcNHjwYEmSs7OzAgICVK9ePe3evVslSpTQ3bt3lTlzZmXPnl05c+bUpEmTdPv27VidJ02aNGrfvr3lcZ8+fdSwYUM1btxYkpQrVy4NGzZMrVq10qVLl5QjR45YXwsA4L/bsmWL/Pz8lCdPHs2dO1fp0qWzWv/DDz/IZDKpdu3aNqoQAIC4RYC2scaNG6tFixaSJDs7O6VNm9Yq8P7111+SpFKlSlntV6ZMGQUEBFgty5Mnj+Hzpk2bViaTyWrYtVGnTp1ShQoVrJYVKlRITk5O+uuvv1SlShW1b99eI0aM0JQpU1SuXDlVqVJFtWrVitV5cufObfX4+PHj+v3337V69WrLMrPZLEk6ffo0ARoA3qKgoCCNGzdOHh4emjZtWoxv1v7vf/9T6dKlX3o7EAAA7xoCtI2lSZMmWlA0wmw2RxsOlzx5csP7Ozg4qFixYjp8+HCM6x88eKAvvvhCX3zxhTw8PKKd+2U12dvbS5L69u2rpk2baseOHdq7d69GjBihuXPnKjg4OMZ9nz17Fm3Zv68nMjJS7du3V/369aNt++JEbACA+LV8+XKNHTtWPj4+GjNmTIy3+5jNZv3+++9q3ry5DSoEACB+cA90Ahc1GdihQ4eslh88eDDaTKex1bBhQ+3cuVPHjh2Ltm7RokU6ePBgjL26Li4u0eo5efKkHj16JGdnZ505c0ZDhgxRhgwZ1KRJE02ZMkVz587V6dOndfLkSUvIfvTokWX/c+fOvbbeAgUK6OzZs8qdO7fl69q1axo7dqweP34cy6sHAPwXN2/elL+/v7Jnz65mzZrp+PHj+u233yxfd+7ckSRduXJFDx8+fOO/VQAAJCT0QCdwzs7OqlatmoYNGyaTyaTcuXNr8+bN2r59uyZNmvTKfR0dHXX69GndvXs32n1pkvTpp59q+/btatOmjXr06KEKFSooNDRUGzZs0Pz589W/f/8YP8KqTZs2atq0qUaMGKGmTZvq1q1bGjFihIoUKSJPT089evRImzdvVmhoqDp06CA7OzutW7dOadKkUb58+ZQyZUplz55dCxcuVJ48eXTv3j1NnjxZJpPpldfz+eefq2fPngoMDFTt2rV17do1DRw4UDly5KAHGgDekh07dig0NFSXL19Ws2bNoq339/dXgwYNLPNepE6d+m2XCABAvCFAvwMCAgIUEBCggQMH6sGDBypYsKCmTp2q6tWrv3K/tm3bWnp+Z86cGW29nZ2dpk2bpiVLlmjVqlWaMGGCkiZNqgIFCigwMFAffvhhjMctXry45s6dq0mTJunjjz9WqlSp5O3trT59+sje3l7p0qXTnDlzNGHCBDVs2FDPnj1TiRIlNH/+fMtngI4dO1ajRo1SvXr1lDt3bg0YMEAdOnR45fXUrFlTEydO1KxZszRz5kylTZtWXl5e6tu3r8FnEgDwpj799FN9+umnr93Ozc3NMo8HAACJhcn8shtagUTujz/+kCSlyZpXYRGRNq4GAN6uZEntlCtTKluXYfHkyROdOHFChQsXlqOjo63LQRyibRMv2jbxeh/bNiobuLq6vnI77oEGAAAAAMAAAjQAAAAAAAYQoAEAAAAAMIAADQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQAAAAAAAYQIAGAAAAAMAAAjQAAAAAAAYQoAEAAAAAMIAADQAAAACAAQRoAAAAAAAMSGrrAgBbc0jK+0gA3j/87gMAIPYI0HjvZU3naOsSAMAmzGazTCaTrcsAAOCdwdvPeK+Fh4crJCTE1mUgjoWEhOj48eO0bSJE28YtwjMAALFDgMZ7z2w227oExDGz2ayQkBDaNhGibQEAgC0RoAEAAAAAMIAADQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAANMZqYyxXvq8OHDMpvNsre356NcEhmz2aynT5/StokQbZt40baJF22beNG2idf72Lbh4eEymUwqWbLkK7dL+pbqARKcqF8G78svhfeJyWSSg4ODrctAPKBtEy/aNvGibRMv2jbxeh/b1mQyGcoF9EADAAAAAGAA90ADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNN47kZGRmjJliipVqqQSJUro888/18WLF21dFt7QrFmz1KJFC6tlJ06cUPPmzVWiRAl5eXlp0aJFNqoOsXXv3j19/fXXqly5skqWLKkmTZro4MGDlvV79+5VgwYNVLx4cdWsWVObN2+2YbWIjdu3b6tfv34qV66c3N3d1aFDB50+fdqynp/bxOHs2bNyd3fX2rVrLcto23fX9evX5eLiEu0rqn1p23dbcHCwfHx85Orqqtq1a+u7776zrLt06ZI6duyokiVLqmLFipo0aZKePXtmw2ptjwCN98706dO1dOlSjRgxQsuXL1dkZKTat2+v8PBwW5eG/+jbb7/VpEmTrJbdvXtXbdq0Ua5cubRmzRp17dpV48eP15o1a2xTJGKld+/eOnLkiAICArRmzRoVLlxY7dq105kzZ3T69Gl17NhRlSpV0tq1a/XZZ5/pyy+/1N69e21dNgzo2rWrzp8/r9mzZ2v16tVKnjy5WrdurZCQEH5uE4mnT5+qb9++evLkiWUZbftuO3nypJIlS6Zdu3Zp9+7dli8fHx/a9h23fv16DRw4UM2aNdPmzZvl6+tr+Rv89OlTtWvXTpK0fPlyDR06VMuWLdO0adNsXLVtJbV1AcDbFB4ernnz5qlv376qWrWqJGnixImqVKmSfvjhB/n6+tq2QMTK9evXNWTIEO3bt0958uSxWrdy5UrZ29tr+PDhSpo0qZydnS3/af/kk09sUzAMOX/+vPbs2aOlS5eqVKlSkqTBgwdr165d2rhxo27fvi0XFxf16tVLkuTs7Kzjx49r7ty58vT0tGXpeI379+8re/bs6tixowoWLChJ6tKli+rVq6e///5be/fu5ec2EZg6dapSpUpltYzfye+2U6dOKU+ePMqcOXO0dQsXLqRt31Fms1mTJ09Wy5Yt1axZM0lS586ddfDgQe3fv1+XL1/WlStXtHLlSqVJk0YFCxbU7du3NXbsWHXq1EkODg42vgLboAca75WTJ0/q8ePHVv/JTp06tYoUKaIDBw7YsDL8F8eOHZO9vb02bNig4sWLW607ePCgPDw8lDTp/79PWK5cOZ07d063bt1626UiFtKlS6fZs2fL1dXVssxkMslkMunBgwc6ePBgtKBcrlw5HTp0SGaz+W2Xi1hIkyaNJkyYYAnPd+7c0YIFC5Q1a1blz5+fn9tE4MCBA1qxYoVGjx5ttZy2fbf99ddfcnZ2jnEdbfvuOnv2rC5fvqw6depYLQ8KClLHjh118OBBFS1aVGnSpLGsK1eunB49eqQTJ0687XITDAI03ivXrl2TJH3wwQdWyzNnzmxZh3eHl5eXpk6dqpw5c0Zbd+3aNWXNmtVqWdQ751evXn0r9eG/SZ06tapUqWL1zvbWrVt1/vx5VapU6aVtGzUEGO+GwYMHy9PTU5s3b9bIkSPl6OjIz+077sGDB/ryyy81aNCgaH9nadt326lTp3Tnzh01a9ZM5cuXV5MmTbRz505JtO277OzZs5KkJ0+eqF27dvL09NRnn32mn376SRJt+zIEaLxXQkJCJCnakJNkyZIpLCzMFiUhnoSGhsbYzpJo63fM4cOHNWDAAH300UeqWrVqjG0b9Zi5DN4drVq10po1a+Tr66uuXbvq2LFj/Ny+44YOHSp3d/dovVkSv5PfZRERETpz5ozu37+vbt26afbs2SpRooQ6dOigvXv30rbvsEePHkmS+vfvL19fX82bN08VKlRQly5daNtX4B5ovFeSJ08u6fl/sqO+l57/EkiRIoWtykI8SJ48ebQwFfXL3tHR0RYl4T/Ytm2b+vbtq5IlS2r8+PGSnv/x/nfbRj3m5/jdkT9/fknSyJEjdfToUS1ZsoSf23dYcHCwDh48qI0bN8a4nrZ9dyVNmlT79u1TkiRJLP93KlasmP7++28FBQXRtu8we3t7SVK7du1Uv359SVLhwoV1/PhxzZ8/n7Z9CXqg8V6JGlJ248YNq+U3btxQlixZbFES4knWrFljbGdJtPU7YsmSJerWrZuqVaummTNnWt71/uCDD2JsW0dHRzk5OdmiVBh0584dbd68WREREZZldnZ2yp8/v27cuMHP7TtszZo1un37tqpWrSp3d3e5u7tLkoYMGaL27dvTtu+4lClTWnU8SFKBAgV0/fp12vYdFtU+UfNSRMmfP78uXbpE274EARrvlUKFCilVqlTat2+fZdmDBw90/PhxlSlTxoaVIa6VKVNGhw4dsvqswl9//VV58+ZVhgwZbFgZjIj6qLlmzZopICDAaghZ6dKltX//fqvtf/31V5UsWVJ2dvxZS8hu3bql3r17W33k2NOnT3X8+HE5Ozvzc/sOGz9+vLZs2aLg4GDLlyR1795dI0eOpG3fYX///bdKlixp9X8nSfrzzz+VP39+2vYdVrRoUaVMmVJHjx61Wn7q1CnlypVLZcqU0fHjxy1DvaXnbZsyZUoVKlTobZebYPA/DbxXHBwc1Lx5c40fP17bt2/XyZMn1atXL2XNmlUfffSRrctDHPrkk0/06NEjDRw4UP/884/Wrl2rBQsWqGPHjrYuDa9x9uxZjRo1StWrV1fHjh1169Yt3bx5Uzdv3tTDhw/VokUL/f777xo/frxOnz6tefPm6fvvv1f79u1tXTpeo2DBgqpcubK++eYbHThwQKdOnZKfn58ePHig1q1b83P7DsuSJYty585t9SVJGTJkUJYsWWjbd5izs7Py5cun4cOH6+DBgzp9+rT8/f3122+/qXPnzrTtOyx58uRq3769pk2bpk2bNunChQuaMWOG9uzZozZt2sjb21uZMmVSz549dfLkSW3btk0BAQFq27bte/sRVpJkMvOZH3jPPHv2TAEBAVq7dq1CQ0NVpkwZff3118qRI4etS8Mb8PPz0+XLl7V48WLLst9//10jR47U8ePHlSlTJrVt21bNmze3YZUwYubMmZo4cWKM6+rXr6/Ro0dr586dGjdunM6dO6ccOXKoW7du8vHxecuV4r94+PChJkyYoG3btunhw4cqXbq0/Pz8VKBAAUn83CYmLi4u8vf3V4MGDSTRtu+yW7duacKECdq1a5cePHigIkWKqG/fvipdurQk2vZdN3/+fC1ZskTXr1+Xs7OzunXrJm9vb0nS+fPnNWzYMB08eFBp0qTRp59+qm7dur3XI74I0AAAAAAAGPD+vnUAAAAAAEAsEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAACJHJ9aCgBxgwANAMB7rEWLFipSpIj++OOPGNd7eXnJz8/vrdTi5+cnLy+vt3Ku2IiIiJCfn5/c3d1VsmRJ/frrr9G2uXTpklxcXF75tWzZsrde+4MHD/Tll1/q4MGDb/3cAJAYJbV1AQAAwLaePXumAQMGaO3atXJwcLB1OQnOrl27tG7dOnXp0kXly5dXkSJFXrpt586dVbVq1RjX5cyZM54qfLkTJ05o/fr1+uSTT976uQEgMSJAAwDwnnNyctLff/+tadOmqVevXrYuJ8G5d++eJKlBgwavDcG5cuVSiRIl4r8oAIBNMIQbAID3XOHChfXxxx9r7ty5+vPPP1+5rYuLi6ZOnWq1bOrUqXJxcbE89vPzU7t27bRixQp5e3vLzc1NjRs31tmzZ/Xzzz+rTp06Kl68uD777DOdOHEi2jlWrFihqlWrys3NTa1atdLx48et1l+5ckW9e/eWh4eHihcvHm2bqOHU8+fPV82aNVW8eHGtWbMmxut59uyZvv32W9WpU0dubm6qWrWqxo8fr7CwMMu1RA1h9/b2VosWLV75/LxOWFiYSpUqpTFjxlgtj4iIULly5fTNN99Ylq1atUq1a9dWsWLFVLVqVU2dOlXPnj2zrPfz81Pr1q21Zs0a1ahRQ8WKFVO9evW0c+dOSdK+ffvUsmVLSVLLli0ttV+4cEGdOnVS2bJlVbx4cTVq1Eg7dux4o+sCgPcFARoAAOirr75SunTpNGDAAIWHh7/x8Y4cOaIlS5bIz89P/v7+On36tDp06CB/f3917NhRAQEBunr1qvr27Wu137Vr1xQYGKiePXsqICBA9+/fV4sWLXTlyhVJ0p07d9S4cWMdO3ZMgwcP1oQJExQZGalmzZrp9OnTVseaOnWqPv/8c40dO1YVKlSIsc6vv/5a/v7+8vb21owZM9SsWTMtWbJEXbp0kdlsVpcuXdS5c2dJUmBgoIYMGfLK646MjFRERES0r6jgmyxZMtWoUUPfffed1cRee/bs0d27d1WvXj1J0qxZszR48GB5enpq5syZatasmebMmaPBgwdbne/PP/9UUFCQunfvrmnTpilJkiTq1q2b7t+/r6JFi+rrr7+2XOeQIUMUGRmpjh07KiQkRGPHjtX06dOVNm1ade7cWefPn3/ltQEAGMINAAAkpUmTRsOHD1fnzp3jZCj348ePNWnSJDk7O0uS9u/fr+XLl2vBggXy9PSUJJ0/f15jxozRgwcPlDp1aknPe4SnTZsmNzc3SVLx4sXl7e2txYsXq3///lq4cKHu3bunZcuWKXv27JKkypUry8fHR5MnT9aUKVMsNdSqVeuV9/7+888/Wr16tfr06aMOHTpIkipUqKDMmTPryy+/1M6dO1WlShXlypVL0vOe+hw5crzyugcOHKiBAwdGW+7o6KgjR45IkurVq6c1a9bo0KFDKl26tCRp8+bNypcvn1xdXfXw4UNNnz5djRo10qBBgyRJFStWVNq0aTVo0CC1adNGBQoUkCQ9fPhQa9eutdTo6Oio5s2b69dff1WNGjWUP39+SVL+/PmVP39+3bx5U2fOnFGXLl1UpUoVSZKbm5sCAwPj5I0TAEjsCNAAAEDS8xm369atq7lz5+qjjz5S0aJF//Ox0qRJYwnPkpQxY0ZJzwNxlLRp00qSVYDOmTOnJTxLUqZMmVSiRAkdOHBAkrR3714VLlxYWbJkUUREhCTJzs5OlStX1oYNG6xqKFy48Ctr3L9/vySpdu3aVstr166tAQMGaN++fZaQadQXX3wR4yRiSZIksXzv4eGhbNmyafPmzSpdurTCwsK0bds2S4g/cuSIQkND5eXlZblGSZYZyvfs2WMJ0OnTp7eEZ0nKmjWrJCkkJCTG+jJmzKj8+fNr8ODB2r17typWrKjKlStrwIABsbpOAHhfEaABAIDFoEGDtHfvXg0YMOCl9w0bkSpVqhiXOzo6vnK/qKD9ogwZMujq1auSnk/odf78+ZeG+xeD4+vOdf/+fUnPQ/qLkiZNqnTp0unhw4ev3D8m2bNnl6ur6yu3MZlMqlOnjlatWqVBgwbp559/1pMnT1SnTh1J/z9pWVSg/rcbN25Yvk+RIkW0Y0vPh5K/7Nzz5s3TjBkz9OOPPyo4OFj29vby9vbWsGHDlCZNGkPXCQDvKwI0AACwSJMmjYYOHaquXbtq+vTpMW7z4kRWkvTkyZM4O39UqH3RzZs3lT59eknPZwz38PDQl19+GeP+sfkYrqiwePPmTctwcEl6+vSp7t69q3Tp0sWm9FipV6+eZs2apX379mnLli0qU6aMpYao3vjx48crT5480faN6U2G2MiSJYuGDh2qIUOG6OTJk/r+++81Z84cpUuX7rX3eAPA+45JxAAAgBVvb2/5+vpq9uzZunPnjtW6VP/X3t2DNLKFYRx/skS0WJkE/CiT4AcakRSiIYKgWCgSFMVag9goCkZBUBCCkEIhQkRIodgpIioEjLUiiJURm5SBIEjASgURDLvFcofN1b13wrW7/x9MMecMnDnTPcx7zvn+Xfl8vqjt5ubmy8bOZrPK5XLm/cPDg9LptPx+v6Rf5c/ZbFYej0etra3mlUwmdXR0VFQq/W86Ojok/Vp//LtUKqVCoaC2trYvmNHn6urq1NLSolQqpYuLCw0ODpp9Pp9PZWVlyufzRXO02+3a2NjQ/f295XH+/j3S6bQ6Ozt1d3cnm82m5uZmhcNhNTY2mhu1AQD+jD/QAADgg5WVFV1fX+vx8bGovbu7W6lUSj6fTy6XSycnJ1+6e3N5ebmmpqYUDodVKBQUj8flcDg0Pj4uSQqFQkomkwqFQpqYmJDT6dTZ2ZkODw9LXsdbX1+v4eFhbW5u6vX1Ve3t7cpkMtra2pLf71dXV1fJ75/L5XR7e/tpn2EY8ng85v3Q0JDW1tZkt9vV399vtjudTk1OTioej+vl5UV+v1/5fF7xeFw2m01NTU2W36eyslKSdH5+LsMw5PV6VVFRocXFRc3OzqqqqkpXV1fKZDLmkVcAgD8jQAMAgA8cDocikYhmZmaK2peWlvT+/m4Gv4GBAS0sLJi7Rf9XXq9XfX19ikQien5+ViAQ0PLyslnCXVtbq4ODA8ViMUUiEb29vcntdisajWp0dLTk8aLRqFwul46Pj7W9va2amhqNjY1penpa376VXqiXSCSUSCQ+7evt7S0qiw8Gg1pfX1dPT48ZdP8yNzen6upq7e/va2dnR4ZhKBAIaH5+/sOz/6ShoUHBYFB7e3u6vLzU6empdnd3FYvFFI1G9fT0JLfbrdXVVY2MjJQ8XwD4v7H9+P0QQgAAAAAA8CnWQAMAAAAAYAEBGgAAAAAACwjQAAAAAABYQIAGAAAAAMACAjQAAAAAABYQoAEAAAAAsIAADQAAAACABQRoAAAAAAAsIEADAAAAAGABARoAAAAAAAsI0AAAAAAAWECABgAAAADAgp86rb8HdDLhsQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Apply seaborn style\n", + "sns.set_style(\"whitegrid\")\n", + "\n", + "# Plot for China\n", + "plt.figure(figsize=(10, 6))\n", + "ax_china = sns.barplot(x='count', y='Category', data=china_plot_data, palette='Oranges_r')\n", + "plt.title('Top 5 Event Categories in China')\n", + "plt.xlabel('Number of Events')\n", + "plt.ylabel('Event Category')\n", + "\n", + "# Loop through the bars and add text annotation\n", + "for p in ax_china.patches:\n", + " width = p.get_width()\n", + " plt.text(width + 1, # x position, shifted +1 to the right for spacing\n", + " p.get_y() + p.get_height() / 2, # y position, at the center of the bar\n", + " f'{int(width)}', # text label, the count of events\n", + " va='center') # center alignment\n", + "\n", + "plt.show()\n", + "\n", + "# Plot for United States\n", + "plt.figure(figsize=(10, 6))\n", + "ax_us = sns.barplot(x='count', y='Category', data=us_plot_data, palette='Blues_r')\n", + "plt.title('Top 5 Event Categories in the United States')\n", + "plt.xlabel('Number of Events')\n", + "plt.ylabel('Event Category')\n", + "\n", + "# Loop through the bars and add text annotation for the US plot\n", + "for p in ax_us.patches:\n", + " width = p.get_width()\n", + " plt.text(width + 1, # x position, shifted +1 to the right for spacing\n", + " p.get_y() + p.get_height() / 2, # y position, at the center of the bar\n", + " f'{int(width)}', # text label, the count of events\n", + " va='center') # center alignment\n", + "\n", + "plt.show()\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}