from ..base_handler import ModelHandler from transformers import AutoTokenizer import torch import time import numpy as np class MultipleChoiceHandler(ModelHandler): def __init__(self, model_name, model_class, quantization_type, test_text): super().__init__(model_name, model_class, quantization_type, test_text) self.tokenizer = AutoTokenizer.from_pretrained(model_name) def run_inference(self, model, text): choices = [text.split(f"({chr(65 + i)})")[1].strip() for i in range(4)] inputs = self.tokenizer(choices, return_tensors='pt', padding=True).to(self.device) start_time = time.time() with torch.no_grad(): outputs = model(**inputs) end_time = time.time() return outputs, end_time - start_time def decode_output(self, outputs): logits = outputs.logits predicted_choice = chr(65 + logits.argmax().item()) return f"Predicted choice: {predicted_choice}" def compare_outputs(self, original_outputs, quantized_outputs): if original_outputs is None or quantized_outputs is None: return None original_logits = original_outputs.logits.detach().cpu().numpy() quantized_logits = quantized_outputs.logits.detach().cpu().numpy() metrics = { 'mse': ((original_logits - quantized_logits) ** 2).mean(), 'top_1_accuracy': np.mean( np.argmax(original_logits, axis=-1) == np.argmax(quantized_logits, axis=-1) ), } return metrics