from ..base_handler import ModelHandler from transformers import AutoTokenizer import torch import time import numpy as np from scipy.stats import spearmanr from sklearn.metrics.pairwise import cosine_similarity class EmbeddingModelHandler(ModelHandler): def __init__(self, model_name, model_class, quantization_type, test_text): super().__init__(model_name, model_class, quantization_type, test_text) self.tokenizer = AutoTokenizer.from_pretrained(model_name) def run_inference(self, model, text): inputs = self.tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(self.device) start_time = time.time() with torch.no_grad(): outputs = model(**inputs) end_time = time.time() return outputs, end_time - start_time def decode_output(self, outputs): return outputs.last_hidden_state.mean(dim=1).cpu().numpy() def compare_outputs(self, original_outputs, quantized_outputs): """Compare outputs for embedding models""" if original_outputs is None or quantized_outputs is None: return None original_embeds = original_outputs.last_hidden_state.cpu().numpy() quantized_embeds = quantized_outputs.last_hidden_state.cpu().numpy() metrics = { 'mse': ((original_embeds - quantized_embeds) ** 2).mean(), 'cosine_similarity': cosine_similarity( original_embeds.reshape(1, -1), quantized_embeds.reshape(1, -1) )[0][0], 'correlation': spearmanr( original_embeds.flatten(), quantized_embeds.flatten() )[0], 'norm_difference': np.abs( np.linalg.norm(original_embeds) - np.linalg.norm(quantized_embeds) ) } return metrics