import torch import torch.nn as nn import torch.nn.functional as F from timm.models.layers import DropPath, trunc_normal_ def get_num_layer_for_convnext_single(var_name, depths): """ Each layer is assigned distinctive layer ids """ if var_name.startswith("downsample_layers"): stage_id = int(var_name.split(".")[1]) layer_id = sum(depths[:stage_id]) + 1 return layer_id elif var_name.startswith("stages"): stage_id = int(var_name.split(".")[1]) block_id = int(var_name.split(".")[2]) layer_id = sum(depths[:stage_id]) + block_id + 1 return layer_id else: return sum(depths) + 1 def get_num_layer_for_convnext(var_name): """ Divide [3, 3, 27, 3] layers into 12 groups; each group is three consecutive blocks, including possible neighboring downsample layers; adapted from https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py """ num_max_layer = 12 if var_name.startswith("downsample_layers"): stage_id = int(var_name.split(".")[1]) if stage_id == 0: layer_id = 0 elif stage_id == 1 or stage_id == 2: layer_id = stage_id + 1 elif stage_id == 3: layer_id = 12 return layer_id elif var_name.startswith("stages"): stage_id = int(var_name.split(".")[1]) block_id = int(var_name.split(".")[2]) if stage_id == 0 or stage_id == 1: layer_id = stage_id + 1 elif stage_id == 2: layer_id = 3 + block_id // 3 elif stage_id == 3: layer_id = 12 return layer_id else: return num_max_layer + 1 def get_parameter_groups(model, lr, wd=1e-5, ld=0.9, skip_list=()): parameter_group_names = {} parameter_group_vars = {} skip = {} if skip_list is not None: skip = skip_list elif hasattr(model, "no_weight_decay"): skip = model.no_weight_decay() num_layers = 12 # sum(model.depths) layer_scale = list(ld ** (num_layers + 1 - i) for i in range(num_layers + 2)) for name, param in model.named_parameters(): if not param.requires_grad: continue # frozen weights if ( len(param.shape) == 1 or name.endswith(".bias") or name in skip or name.endswith(".gamma") or name.endswith(".beta") ): group_name = "no_decay" this_weight_decay = 0.0 else: group_name = "decay" this_weight_decay = wd # layer_id = get_num_layer_for_convnext_single(name, model.depths) layer_id = get_num_layer_for_convnext(name) group_name = "layer_%d_%s" % (layer_id, group_name) if group_name not in parameter_group_names: scale = layer_scale[layer_id] cur_lr = lr * scale parameter_group_names[group_name] = { "weight_decay": this_weight_decay, "params": [], "lr_scale": scale, "lr": cur_lr, } parameter_group_vars[group_name] = { "weight_decay": this_weight_decay, "params": [], "lr_scale": scale, "lr": cur_lr, } parameter_group_vars[group_name]["params"].append(param) parameter_group_names[group_name]["params"].append(name) # if is_main_process(): # print("Param groups = %s" % json.dumps(parameter_group_names, indent=2)) return list(parameter_group_vars.values()), [ v["lr"] for k, v in parameter_group_vars.items() ] class LayerNorm(nn.Module): """LayerNorm that supports two data formats: channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). """ def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): super().__init__() self.weight = nn.Parameter(torch.ones(normalized_shape)) self.bias = nn.Parameter(torch.zeros(normalized_shape)) self.eps = eps self.data_format = data_format if self.data_format not in ["channels_last", "channels_first"]: raise NotImplementedError self.normalized_shape = (normalized_shape,) def forward(self, x): if self.data_format == "channels_last": return F.layer_norm( x, self.normalized_shape, self.weight, self.bias, self.eps ) elif self.data_format == "channels_first": u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x class GRN(nn.Module): """GRN (Global Response Normalization) layer""" def __init__(self, dim): super().__init__() self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim)) self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim)) def forward(self, x): Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True) Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6) return self.gamma * (x * Nx) + self.beta + x class Block(nn.Module): """ConvNeXtV2 Block. Args: dim (int): Number of input channels. drop_path (float): Stochastic depth rate. Default: 0.0 """ def __init__(self, dim, drop_path=0.0, mult=4, use_checkpoint=False): super().__init__() self.dwconv = nn.Conv2d( dim, dim, kernel_size=7, padding=3, groups=dim ) # depthwise conv self.norm = LayerNorm(dim, eps=1e-6) self.pwconv1 = nn.Linear( dim, mult * dim ) # pointwise/1x1 convs, implemented with linear layers self.act = nn.GELU() self.grn = GRN(mult * dim) self.pwconv2 = nn.Linear(mult * dim, dim) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.use_checkpoint = use_checkpoint def forward(self, x): input = x x = self.dwconv(x) x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) x = self.norm(x) x = self.pwconv1(x) x = self.act(x) x = self.grn(x) x = self.pwconv2(x) x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) x = input + self.drop_path(x) return x class ConvNeXtV2(nn.Module): """ConvNeXt V2 Args: in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768] drop_path_rate (float): Stochastic depth rate. Default: 0. head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. """ def __init__( self, in_chans=3, depths=[3, 3, 9, 3], dims=96, drop_path_rate=0.0, output_idx=[], use_checkpoint=False, ): super().__init__() self.num_layers = len(depths) self.depths = output_idx self.embed_dims = [ int(dim) for i, dim in enumerate(dims) for _ in range(depths[i]) ] self.embed_dim = dims[0] self.downsample_layers = ( nn.ModuleList() ) # stem and 3 intermediate downsampling conv layers stem = nn.Sequential( nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), LayerNorm(dims[0], eps=1e-6, data_format="channels_first"), ) self.downsample_layers.append(stem) for i in range(3): downsample_layer = nn.Sequential( LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2), ) self.downsample_layers.append(downsample_layer) self.stages = ( nn.ModuleList() ) # 4 feature resolution stages, each consisting of multiple residual blocks self.out_norms = nn.ModuleList() dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] cur = 0 for i in range(4): stage = nn.ModuleList( [ Block( dim=dims[i], drop_path=dp_rates[cur + j], use_checkpoint=use_checkpoint, ) for j in range(depths[i]) ] ) self.stages.append(stage) cur += depths[i] self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, (nn.Conv2d, nn.Linear)): trunc_normal_(m.weight, std=0.02) nn.init.constant_(m.bias, 0) def forward(self, x): outs = [] for i in range(4): x = self.downsample_layers[i](x) for stage in self.stages[i]: x = stage(x) outs.append(x.permute(0, 2, 3, 1)) cls_tokens = [x.mean(dim=(1, 2)).unsqueeze(1).contiguous() for x in outs] return outs, cls_tokens def get_params(self, lr, wd, ld, *args, **kwargs): encoder_p, encoder_lr = get_parameter_groups(self, lr, wd, ld) return encoder_p, encoder_lr def freeze(self) -> None: for module in self.modules(): module.eval() for parameters in self.parameters(): parameters.requires_grad = False @classmethod def build(cls, config): obj = globals()[config["model"]["encoder"]["name"]](config) return obj