import gradio as gr import math import spacy from datasets import load_dataset from sentence_transformers import SentenceTransformer from sentence_transformers import InputExample from sentence_transformers import losses from sentence_transformers import util from transformers import pipeline from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification from transformers import TrainingArguments, Trainer import torch import torch.nn.functional as F from torch.utils.data import DataLoader import numpy as np import evaluate import nltk from nltk.corpus import stopwords import subprocess import sys import random # !pip install https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl']) # tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') model_base = "bert-analogies" nltk.download('stopwords') nlp = spacy.load("en_core_web_sm") stops = stopwords.words("english") ROMAN_CONSTANTS = ( ( "", "I", "II", "III", "IV", "V", "VI", "VII", "VIII", "IX" ), ( "", "X", "XX", "XXX", "XL", "L", "LX", "LXX", "LXXX", "XC" ), ( "", "C", "CC", "CCC", "CD", "D", "DC", "DCC", "DCCC", "CM" ), ( "", "M", "MM", "MMM", "", "", "-", "", "", "" ), ( "", "i", "ii", "iii", "iv", "v", "vi", "vii", "viii", "ix" ), ( "", "x", "xx", "xxx", "xl", "l", "lx", "lxx", "lxxx", "xc" ), ( "", "c", "cc", "ccc", "cd", "d", "dc", "dcc", "dccc", "cm" ), ( "", "m", "mm", "mmm", "", "", "-", "", "", "" ), ) # answer = "Pizza" guesses = [] return_guesses = [] answer = "Moon" word1 = "Black" word2 = "White" word3 = "Sun" #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output['token_embeddings'] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) def normalize(comment, lowercase, remove_stopwords): if lowercase: comment = comment.lower() comment = nlp(comment) lemmatized = list() for word in comment: lemma = word.lemma_.strip() if lemma: if not remove_stopwords or (remove_stopwords and lemma not in stops): lemmatized.append(lemma) return " ".join(lemmatized) # def tokenize_function(examples): # return tokenizer(examples["text"]) def compute_metrics(eval_pred): logits, labels = eval_pred predictions = np.argmax(logits, axis=-1) metric = evaluate.load("accuracy") return metric.compute(predictions=predictions, references=labels) def get_model(): global model_base model = SentenceTransformer(model_base) gpu_available = torch.cuda.is_available() device = torch.device("cuda" if gpu_available else "cpu") model = model.to(device) return model def cosine_scores(model, sentence): global word1 global word2 global word3 # sentence1 = f"{word1} is to {word2} as" embeddings1 = model.encode(sentence, convert_to_tensor=True) def embeddings(model, sentences): gpu_available = torch.cuda.is_available() device = torch.device("cuda" if gpu_available else "cpu") # device = torch.device('cuda:0') embeddings = model.encode(sentences) global word1 global word2 global word3 global model_base # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained(model_base) encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # token_ids = tokenizer.encode(sentences, return_tensors='pt') # blank_id = tokenizer.mask_token_id # blank_id_idx = torch.where(encoded_input["input_ids"] == blank_id)[1] encoded_input["input_ids"] = encoded_input["input_ids"].to(device) encoded_input["attention_mask"] = encoded_input["attention_mask"].to(device) encoded_input['token_type_ids'] = encoded_input['token_type_ids'].to(device) encoded_input['input'] = {'input_ids':encoded_input['input_ids'], 'attention_mask':encoded_input['attention_mask']} del encoded_input['input_ids'] del encoded_input['token_type_ids'] del encoded_input['attention_mask'] with torch.no_grad(): # output = model(encoded_input) print(encoded_input) model_output = model(**encoded_input) # output = model(encoded_input_topk) unmasker = pipeline('fill-mask', model=model_base) guesses = unmasker(sentences) print(guesses) # Perform pooling sentence_embeddings = mean_pooling(model_output, encoded_input['input']["attention_mask"]) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) potential_words = [] for guess in guesses: temp_word = guess['token_str'] if temp_word[0].isalpha() and temp_word not in stops and temp_word not in ROMAN_CONSTANTS: potential_words.append(guess['token_str']) rand_index = random.randint(0, len(potential_words) - 1) print("THE LENGTH OF POTENTIAL WORDS FOR", sentences, "IS", len(potential_words), "AND THE RANDOM INDEX CHOSEN IS", rand_index) chosen_word = potential_words[rand_index] return chosen_word def random_word(): global model_base with open(model_base + '/vocab.txt', 'r') as file: line = "" content = file.readlines() length = len(content) while line == "": rand_line = random.randrange(0, length) if content[rand_line][0].isalpha() and content[rand_line][:-1] not in stops and content[rand_line][:-1] not in ROMAN_CONSTANTS: line = content[rand_line] else: print(f"{content[rand_line]} is not alpha or is a stop word") # for num, aline in enumerate(file, 1997): # if random.randrange(num) and aline.isalpha(): # continue # # elif not aline.isalpha(): # line = aline print(line) return line[:-1] def generate_prompt(model): global word1 global word2 global word3 global answer word1 = random_word() # word2 = random_word() word2 = embeddings(model, f"{word1} is to [MASK].") word3 = random_word() sentence = f"{word1} is to {word2} as {word3} is to [MASK]." print(sentence) answer = embeddings(model, sentence) print("ANSWER IS", answer) return f"# {word1} is to {word2} as {word3} is to ___." # cosine_scores(model, sentence) def greet(name): return "Hello " + name + "!!" def check_answer(guess:str): global guesses global answer global return_guesses global word1 global word2 global word3 model = get_model() output = "" protected_guess = guess sentence = f"{word1} is to {word2} as [MASK] is to {guess}." other_word = embeddings(model, sentence) guesses.append(guess) for guess in return_guesses: output += ("- " + guess + "
") # output = output[:-1] prompt = f"{word1} is to {word2} as {word3} is to ___." # print("IS", protected_guess, "EQUAL TO", answer, ":", protected_guess.lower() == answer.lower()) if protected_guess.lower() == answer.lower(): return_guesses.append(f"{word1} is to {word2} as {word3} is to {protected_guess}.") output += f"- {return_guesses[-1]}
" new_prompt = generate_prompt(model) return new_prompt, "Correct!", output else: return_guess = f"{guess}: {word1} is to {word2} as {other_word} is to {protected_guess}." return_guesses.append(return_guess) output += ("- " + return_guess + "
") return prompt, "Try again!", output def main(): global word1 global word2 global word3 global answer # answer = "Moon" global guesses # num_rows, data_type, value, example, embeddings = training() # sent_embeddings = embeddings() model = get_model() generate_prompt(model) prompt = f"{word1} is to {word2} as {word3} is to ____" print(prompt) print("TESTING EMBEDDINGS") with gr.Blocks() as iface: mark_question = gr.Markdown(prompt) with gr.Tab("Guess"): text_input = gr.Textbox() text_output = gr.Textbox() text_button = gr.Button("Submit") with gr.Accordion("Open for previous guesses"): text_guesses = gr.Markdown() # with gr.Tab("Testing"): # gr.Markdown(f"""The Embeddings are {sent_embeddings}.""") text_button.click(check_answer, inputs=[text_input], outputs=[mark_question, text_output, text_guesses]) # iface = gr.Interface(fn=greet, inputs="text", outputs="text") iface.launch() if __name__ == "__main__": main()