import os import sys sys.path.append('./codeclm/tokenizer') sys.path.append('./codeclm/tokenizer/Flow1dVAE') sys.path.append('.') import torch import json import numpy as np from omegaconf import OmegaConf from codeclm.models import builders from codeclm.models import CodecLM from separator import Separator from generate import check_language_by_text class LeVoInference(torch.nn.Module): def __init__(self, ckpt_path): super().__init__() torch.backends.cudnn.enabled = False OmegaConf.register_new_resolver("eval", lambda x: eval(x)) OmegaConf.register_new_resolver("concat", lambda *x: [xxx for xx in x for xxx in xx]) OmegaConf.register_new_resolver("get_fname", lambda: 'default') OmegaConf.register_new_resolver("load_yaml", lambda x: list(OmegaConf.load(x))) cfg_path = os.path.join(ckpt_path, 'config.yaml') pt_path = os.path.join(ckpt_path, 'model.pt') self.cfg = OmegaConf.load(cfg_path) self.cfg.mode = 'inference' self.max_duration = self.cfg.max_dur # Define model or load pretrained model audiolm = builders.get_lm_model(self.cfg, version='v1.5') checkpoint = torch.load(pt_path, map_location='cpu') audiolm_state_dict = {k.replace('audiolm.', ''): v for k, v in checkpoint.items() if k.startswith('audiolm')} audiolm.load_state_dict(audiolm_state_dict, strict=False) audiolm = audiolm.eval() audiolm = audiolm.cuda().to(torch.float16) audio_tokenizer = builders.get_audio_tokenizer_model(self.cfg.audio_tokenizer_checkpoint, self.cfg) audio_tokenizer = audio_tokenizer.eval() seperate_tokenizer = builders.get_audio_tokenizer_model(self.cfg.audio_tokenizer_checkpoint_sep, self.cfg) seperate_tokenizer = seperate_tokenizer.eval() self.model = CodecLM(name = "tmp", lm = audiolm, audiotokenizer = audio_tokenizer, max_duration = self.max_duration, seperate_tokenizer = seperate_tokenizer, ) self.separator = Separator() self.default_params = dict( cfg_coef = 1.5, temperature = 1.0, top_k = 50, top_p = 0.0, record_tokens = True, record_window = 50, extend_stride = 5, duration = self.max_duration, ) self.model.set_generation_params(**self.default_params) def forward(self, lyric: str, description: str = None, prompt_audio_path: os.PathLike = None, genre: str = None, auto_prompt_path: os.PathLike = None, gen_type: str = "mixed", params = dict()): params = {**self.default_params, **params} self.model.set_generation_params(**params) if prompt_audio_path is not None and os.path.exists(prompt_audio_path): pmt_wav, vocal_wav, bgm_wav = self.separator.run(prompt_audio_path) melody_is_wav = True elif genre is not None and auto_prompt_path is not None: auto_prompt = torch.load(auto_prompt_path) if genre == 'Auto': lang = check_language_by_text(lyric) prompt_token = auto_prompt['Auto'][lang][np.random.randint(0, len(auto_prompt['Auto'][lang]))] else: prompt_token = auto_prompt[genre][np.random.randint(0, len(auto_prompt[genre]))] pmt_wav = prompt_token[:,[0],:] vocal_wav = prompt_token[:,[1],:] bgm_wav = prompt_token[:,[2],:] melody_is_wav = False else: pmt_wav = None vocal_wav = None bgm_wav = None melody_is_wav = True description = description if description else '.' description = '[Musicality-very-high]' + ', ' + description generate_inp = { 'lyrics': [lyric.replace(" ", " ")], 'descriptions': [description], 'melody_wavs': pmt_wav, 'vocal_wavs': vocal_wav, 'bgm_wavs': bgm_wav, 'melody_is_wav': melody_is_wav, } with torch.autocast(device_type="cuda", dtype=torch.float16): tokens = self.model.generate(**generate_inp, return_tokens=True) with torch.no_grad(): if melody_is_wav: wav_seperate = self.model.generate_audio(tokens, pmt_wav, vocal_wav, bgm_wav, gen_type=gen_type) else: wav_seperate = self.model.generate_audio(tokens, gen_type=gen_type) return wav_seperate[0]