import gradio as gr import torch from transformers import NllbTokenizer, AutoModelForSeq2SeqLM MODEL_URL = 'slone/nllb-rus-tyv-v1' # tokenizer = NllbTokenizer.from_pretrained(MODEL_URL, force_download=True) lang_to_code = { 'Русский | Russian': 'rus_Cyrl', 'Тувинский | Tyvan': 'tyv_Cyrl', } def fix_tokenizer(tokenizer, new_lang='tyv_Cyrl'): """ Add a new language token to the tokenizer vocabulary (this should be done each time after its initialization) """ old_len = len(tokenizer) - int(new_lang in tokenizer.added_tokens_encoder) tokenizer.lang_code_to_id[new_lang] = old_len-1 tokenizer.id_to_lang_code[old_len-1] = new_lang # always move "mask" to the last position tokenizer.fairseq_tokens_to_ids[""] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id) tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()} if new_lang not in tokenizer._additional_special_tokens: tokenizer._additional_special_tokens.append(new_lang) # clear the added token encoder; otherwise a new token may end up there by mistake tokenizer.added_tokens_encoder = {} tokenizer.added_tokens_decoder = {} def translate( text, model, tokenizer, src_lang='rus_Cyrl', tgt_lang='tyv_Cyrl', max_length='auto', num_beams=4, no_repeat_ngram_size=4, n_out=None, **kwargs ): tokenizer.src_lang = src_lang encoded = tokenizer(text, return_tensors="pt", truncation=True, max_length=512) if max_length == 'auto': max_length = int(32 + 2.0 * encoded.input_ids.shape[1]) model.eval() generated_tokens = model.generate( **encoded.to(model.device), forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang], max_length=max_length, num_beams=num_beams, no_repeat_ngram_size=no_repeat_ngram_size, num_return_sequences=n_out or 1, **kwargs ) out = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) if isinstance(text, str) and n_out is None: return out[0] return out def translate_wrapper(text, src, trg, correct=None): src_lang = lang_to_code.get(src) tgt_lang = lang_to_code.get(trg) if src == trg: return 'Please choose two different languages' print(text, src, trg) result = translate( text=text, model=model, tokenizer=tokenizer, src_lang=src_lang, tgt_lang=tgt_lang, ) return result article = """ This is a NLLB-200-600M model fine-tuned for translation between Russian and Tyvan (Tuvan) languages, using the data from https://tyvan.ru/. **More details will be published soon!** __Please translate one sentence at a time; the model is not working adequately with multiple sentences!__ """ interface = gr.Interface( translate_wrapper, [ gr.Textbox(label="Text", lines=2, placeholder='text to translate '), gr.Dropdown(list(lang_to_code.keys()), type="value", label='source language', value=list(lang_to_code.keys())[0]), gr.Dropdown(list(lang_to_code.keys()), type="value", label='target language', value=list(lang_to_code.keys())[1]), ], "text", title='Tyvan-Russian translaton', article=article, ) if __name__ == '__main__': model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_URL) if torch.cuda.is_available(): model.cuda() tokenizer = NllbTokenizer.from_pretrained(MODEL_URL, force_download=True) fix_tokenizer(tokenizer) interface.launch()