from typing import Dict, List, Union from pathlib import Path import datasets import torch import evaluate import json from .coco import COCO from .coco_evaluate import COCOEvaluator from .utils import _TYPING_PREDICTION, _TYPING_REFERENCE _DESCRIPTION = "This class evaluates object detection models using the COCO dataset \ and its evaluation metrics." _HOMEPAGE = "https://cocodataset.org" _CITATION = """ @misc{lin2015microsoft, \ title={Microsoft COCO: Common Objects in Context}, author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and \ Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick \ and Piotr Dollár}, year={2015}, eprint={1405.0312}, archivePrefix={arXiv}, primaryClass={cs.CV} } """ _REFERENCE_URLS = [ "https://ieeexplore.ieee.org/abstract/document/9145130", "https://www.mdpi.com/2079-9292/10/3/279", "https://cocodataset.org/#detection-eval", ] _KWARGS_DESCRIPTION = """\ Computes COCO metrics for object detection: AP(mAP) and its variants. Args: coco (COCO): COCO Evaluator object for evaluating predictions. **kwargs: Additional keyword arguments forwarded to evaluate.Metrics. """ class EvaluateObjectDetection(evaluate.Metric): """ Class for evaluating object detection models. """ def __init__(self, json_gt: Union[Path, Dict], iou_type: str = "bbox", **kwargs): """ Initializes the EvaluateObjectDetection class. Args: json_gt: JSON with ground-truth annotations in COCO format. # coco_groundtruth (COCO): COCO Evaluator object for evaluating predictions. **kwargs: Additional keyword arguments forwarded to evaluate.Metrics. """ super().__init__(**kwargs) # Create COCO object from ground-truth annotations if isinstance(json_gt, Path): assert json_gt.exists(), f"Path {json_gt} does not exist." with open(json_gt) as f: json_data = json.load(f) elif isinstance(json_gt, dict): json_data = json_gt coco = COCO(json_data) self.coco_evaluator = COCOEvaluator(coco, [iou_type]) def remove_classes(self, classes_to_remove: List[str]): to_remove = [c.upper() for c in classes_to_remove] cats = {} for id, cat in self.coco_evaluator.coco_eval["bbox"].cocoGt.cats.items(): if cat["name"].upper() not in to_remove: cats[id] = cat self.coco_evaluator.coco_eval["bbox"].cocoGt.cats = cats self.coco_evaluator.coco_gt.cats = cats self.coco_evaluator.coco_gt.dataset["categories"] = list(cats.values()) self.coco_evaluator.coco_eval["bbox"].params.catIds = [ c["id"] for c in cats.values() ] def _info(self): """ Returns the MetricInfo object with information about the module. Returns: evaluate.MetricInfo: Metric information object. """ return evaluate.MetricInfo( module_type="metric", description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, # This defines the format of each prediction and reference features=datasets.Features( { "predictions": [ datasets.Features( { "scores": datasets.Sequence(datasets.Value("float")), "labels": datasets.Sequence(datasets.Value("int64")), "boxes": datasets.Sequence( datasets.Sequence(datasets.Value("float")) ), } ) ], "references": [ datasets.Features( { "image_id": datasets.Sequence(datasets.Value("int64")), } ) ], } ), # Homepage of the module for documentation homepage=_HOMEPAGE, # Additional links to the codebase or references reference_urls=_REFERENCE_URLS, ) def _preprocess( self, predictions: List[Dict[str, torch.Tensor]] ) -> List[_TYPING_PREDICTION]: """ Preprocesses the predictions before computing the scores. Args: predictions (List[Dict[str, torch.Tensor]]): A list of prediction dicts. Returns: List[_TYPING_PREDICTION]: A list of preprocessed prediction dicts. """ processed_predictions = [] for pred in predictions: processed_pred: _TYPING_PREDICTION = {} for k, val in pred.items(): if isinstance(val, torch.Tensor): val = val.detach().cpu().tolist() if k == "labels": val = list(map(int, val)) processed_pred[k] = val processed_predictions.append(processed_pred) return processed_predictions def _clear_predictions(self, predictions): # Remove unnecessary keys from predictions required = ["scores", "labels", "boxes"] ret = [] for prediction in predictions: ret.append({k: v for k, v in prediction.items() if k in required}) return ret def _clear_references(self, references): required = [""] ret = [] for ref in references: ret.append({k: v for k, v in ref.items() if k in required}) return ret def add(self, *, prediction=None, reference=None, **kwargs): """ Preprocesses the predictions and references and calls the parent class function. Args: prediction: A list of prediction dicts. reference: A list of reference dicts. **kwargs: Additional keyword arguments. """ if prediction is not None: prediction = self._clear_predictions(prediction) prediction = self._preprocess(prediction) res = {} # {image_id} : prediction for output, target in zip(prediction, reference): res[target["image_id"][0]] = output self.coco_evaluator.update(res) super(evaluate.Metric, self).add( prediction=prediction, references=reference, **kwargs ) def _compute( self, predictions: List[List[_TYPING_PREDICTION]], references: List[List[_TYPING_REFERENCE]], ) -> Dict[str, Dict[str, float]]: """ Returns the evaluation scores. Args: predictions (List[List[_TYPING_PREDICTION]]): A list of predictions. references (List[List[_TYPING_REFERENCE]]): A list of references. Returns: Dict: A dictionary containing evaluation scores. """ print("Synchronizing processes") self.coco_evaluator.synchronize_between_processes() print("Accumulating values") self.coco_evaluator.accumulate() print("Summarizing results") self.coco_evaluator.summarize() stats = self.coco_evaluator.get_results() return stats