import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.datasets import make_moons, make_circles, make_classification from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.inspection import DecisionBoundaryDisplay from sklearn.datasets import make_blobs, make_circles, make_moons import gradio as gr import math from functools import partial ### DATASETS def normalize(X): return StandardScaler().fit_transform(X) def linearly_separable(): X, y = make_classification( n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1 ) rng = np.random.RandomState(2) X += 2 * rng.uniform(size=X.shape) linearly_separable = (X, y) return linearly_separable DATA_MAPPING = { "Moons": make_moons(noise=0.3, random_state=0), "Circles":make_circles(noise=0.2, factor=0.5, random_state=1), "Linearly Separable Random Dataset": linearly_separable(), } #### MODELS def get_groundtruth_model(X, labels): # dummy model to show true label distribution class Dummy: def __init__(self, y): self.labels_ = labels return Dummy(labels) DATASETS = [ make_moons(noise=0.3, random_state=0), make_circles(noise=0.2, factor=0.5, random_state=1), linearly_separable() ] NAME_CLF_MAPPING = { "Ground Truth":get_groundtruth_model, "Nearest Neighbors":KNeighborsClassifier(3), "Linear SVM":SVC(kernel="linear", C=0.025), "RBF SVM":SVC(gamma=2, C=1), "Gaussian Process":GaussianProcessClassifier(1.0 * RBF(1.0)), "Decision Tree":DecisionTreeClassifier(max_depth=5), "Random Forest":RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1), "Neural Net":MLPClassifier(alpha=1, max_iter=1000), "AdaBoost":AdaBoostClassifier(), "Naive Bayes":GaussianNB(), } #### PLOT FIGSIZE = 7,7 figure = plt.figure(figsize=(25, 10)) i = 1 def train_models(selected_data, clf_name): cm = plt.cm.RdBu cm_bright = ListedColormap(["#FF0000", "#0000FF"]) clf = NAME_CLF_MAPPING[clf_name] X, y = DATA_MAPPING[selected_data] X = StandardScaler().fit_transform(X) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.4, random_state=42 ) x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5 y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5 if clf_name != "Ground Truth": clf.fit(X_train, y_train) score = clf.score(X_test, y_test) fig, ax = plt.subplots(figsize=FIGSIZE) ax.set_title(clf_name, fontsize = 10) DecisionBoundaryDisplay.from_estimator( clf, X, cmap=cm, alpha=0.8, ax=ax, eps=0.5 ).plot() return fig else: ######### for ds_cnt, ds in enumerate(DATASETS): X, y = ds x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5 y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5 # just plot the dataset first cm = plt.cm.RdBu cm_bright = ListedColormap(["#FF0000", "#0000FF"]) fig, ax = plt.subplots(figsize=FIGSIZE) ax.set_title("Input data") # Plot the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors="k") # Plot the testing points ax.scatter( X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6, edgecolors="k" ) ax.set_xlim(x_min, x_max) ax.set_ylim(y_min, y_max) ax.set_xticks(()) ax.set_yticks(()) return fig ########### description = "Learn how different statistical classifiers perform in different datasets." def iter_grid(n_rows, n_cols): # create a grid using gradio Block for _ in range(n_rows): with gr.Row(): for _ in range(n_cols): with gr.Column(): yield title = "Classification" with gr.Blocks(title=title) as demo: gr.HTML(f"{title}") gr.Markdown(description) input_models = list(NAME_CLF_MAPPING) input_data = gr.Radio( choices=["Moons", "Circles", "Linearly Separable Random Dataset"], value="Moons" ) counter = 0 for _ in iter_grid(2, 5): if counter >= len(input_models): break input_model = input_models[counter] plot = gr.Plot(label=input_model) fn = partial(train_models, clf_name=input_model) input_data.change(fn=fn, inputs=[input_data], outputs=plot) counter += 1 demo.launch(debug=True)