import numpy as np from sklearn.cluster import AffinityPropagation from sklearn import metrics from sklearn.datasets import make_blobs import matplotlib.pyplot as plt import matplotlib matplotlib.use('agg') import gradio as gr def generate_data(num_centers, num_samples): all_centers = [[1, 1], [-1, -1], [1, -1], [-1, 1]] centers = all_centers[:num_centers] X, labels_true = make_blobs(n_samples=num_samples, centers=centers, cluster_std=0.5, random_state=0) return X, labels_true def create_plot(num_clusters, num_samples): X, labels_true = generate_data(num_clusters, num_samples) af = AffinityPropagation(preference=-50, random_state=0).fit(X) cluster_centers_indices = af.cluster_centers_indices_ labels = af.labels_ n_clusters_ = len(cluster_centers_indices) metrics_str = f"Estimated number of clusters: {n_clusters_}\n" metrics_str += f"Homogeneity: {metrics.homogeneity_score(labels_true, labels):0.3f}\n" metrics_str += f"Completeness: {metrics.completeness_score(labels_true, labels):0.3f}\n" metrics_str += f"V-measure: {metrics.v_measure_score(labels_true, labels):0.3f}\n" metrics_str += f"Adjusted Rand Index: {metrics.adjusted_rand_score(labels_true, labels):0.3f}\n" metrics_str += f"Adjusted Mutual Information: {metrics.adjusted_mutual_info_score(labels_true, labels):0.3f}\n" metrics_str += f"Silhouette Coefficient: {metrics.silhouette_score(X, labels, metric='sqeuclidean'):0.3f}\n" fig = plt.figure(1) plt.clf() colors = plt.cycler("color", plt.cm.viridis(np.linspace(0, 1, n_clusters_))) for k, col in zip(range(n_clusters_), colors): class_members = labels == k cluster_center = X[cluster_centers_indices[k]] plt.scatter( X[class_members, 0], X[class_members, 1], color=col["color"], marker="." ) plt.scatter( cluster_center[0], cluster_center[1], s=14, color=col["color"], marker="o" ) for x in X[class_members]: plt.plot( [cluster_center[0], x[0]], [cluster_center[1], x[1]], color=col["color"] ) plt.title("Estimated number of clusters: %d" % n_clusters_) plt.xlabel("x") plt.ylabel("y") return fig, metrics_str title = "Affinity propagation clustering algorithm" description = """ This demo plots clusters of a synthetic 2D dataset that contains up to 4 clusters using the affinity propagation algorithm.\ The 2-dimensional dataset is generated around 2 to 4 predetermined cluster centers, by sampling a Gaussian distribution \ with 0.5 standard deviation around each center. The demo uses the affinity propagation clustering algorithm to assign the data into \ clusters. It also calculates a cluster center. \ The figure shows a scatter plot of the data points and their connection to the respective cluster center. The demo also \ presents several metrics based on the true and assigned labels. """ with gr.Blocks() as demo: gr.Markdown(f"## {title}") gr.Markdown(description) num_clusters = gr.Slider(minimum=2, maximum=4, step=1, value=2, label="Number of clusters") num_samples = gr.Slider(minimum=100, maximum=300, step=100, value=200, label="Number of samples") with gr.Row(): plot = gr.Plot() text_box = gr.Textbox(label="Results") num_clusters.change(fn=create_plot, inputs=[num_clusters, num_samples], outputs=[plot, text_box]) num_samples.change(fn=create_plot, inputs=[num_clusters, num_samples], outputs=[plot, text_box]) demo.launch(enable_queue=True)