# Code source: Gaël Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import svm import gradio as gr from matplotlib.colors import ListedColormap plt.switch_backend("agg") font1 = {'family':'DejaVu Sans','size':20} def create_data(random, size_num, x_min, x_max, y_min, y_max): #emulate some random data if random: size_num = int(size_num) x = np.random.uniform(x_min, x_max, size=(size_num, 1)) y = np.random.uniform(y_min, y_max, size=(size_num, 1)) X = np.hstack((x, y)) Y = [0] * int(size_num/2) + [1] * int(size_num/2) else: X = np.c_[ (0.4, -0.7), (-1.5, -1), (-1.4, -0.9), (-1.3, -1.2), (-1.5, 0.2), (-1.2, -0.4), (-0.5, 1.2), (-1.5, 2.1), (1, 1), # -- (1.3, 0.8), (1.5, 0.5), (0.2, -2), (0.5, -2.4), (0.2, -2.3), (0, -2.7), (1.3, 2.8), ].T Y = [0] * 8 + [1] * 8 return X, Y # fit the model def clf_kernel(color1, color2, dpi, size_num = None, x_min = None, x_max = None, y_min = None, y_max = None, random = False): if size_num is not None or x_min is not None or x_max is not None or y_min is not None or y_max is not None: random = True X, Y = create_data(random, size_num, x_min, x_max, y_min, y_max) kernels = ["linear", "poly", "rbf"] # plot the line, the points, and the nearest vectors to the plane fig, axs = plt.subplots(1,3, figsize = (16,8), facecolor='none', dpi = res[dpi]) cmap = ListedColormap([color1, color2], N=2, name = 'braincell') for i, kernel in enumerate(kernels): clf = svm.SVC(kernel=kernel, gamma=2) clf.fit(X, Y) axs[i].scatter( clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors="none", zorder=10, edgecolors="k", ) axs[i].scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=cmap, edgecolors="k") axs[i].axis("tight") x_min = -3 x_max = 3 y_min = -3 y_max = 3 XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) axs[i].pcolormesh(XX, YY, Z > 0, cmap=cmap) axs[i].contour( XX, YY, Z, colors=["k", "k", "k"], linestyles=["--", "-", "--"], levels=[-0.5, 0, 0.5], ) axs[i].set_xlim(x_min, x_max) axs[i].set_ylim(y_min, y_max) axs[i].set_xticks(()) axs[i].set_yticks(()) axs[i].set_title('Type of kernel: ' + kernel, color = "white", fontdict = font1, pad=20, bbox=dict(boxstyle="round,pad=0.3", color = "#6366F1")) plt.close() return fig, np.round(X, decimals=2) intro = """

🤗 Introducing SVM-Kernels 🤗

""" desc = """

Three different types of SVM-Kernels are displayed below. The polynomial and RBF are especially useful when the data-points are not linearly separable.

""" notice = """
Notice: Run the model on example data or use Randomize data button below to check out the model on randomized data-points. Any changes to visual parameters will reset the data!
""" notice2 = """
Notice: The data points are categorized into two distinct classes, and they are evenly distributed on the plots to visually represent these classes.
""" made ="""

Made with ❤

""" link = """
Demo is based on this script from scikit-learn documentation""" res = {'Small': 50, 'Medium': 75, 'Large': 100} with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo", secondary_hue="violet", neutral_hue="slate", font = gr.themes.GoogleFont("Inter")), title="SVM-Kernels") as demo: gr.HTML(intro) gr.HTML(desc) with gr.Tab("Plotted results"): plot = gr.Plot(label="Kernel comparison:") with gr.Tab("Data coordinates"): gr.HTML(notice2) X = gr.Numpy(headers = ['x','y'], interactive=False) with gr.Column(): with gr.Accordion(label = 'Randomize data'): gr.HTML(notice) samples = gr.Slider(4, 16, value = 8, step = 2, label = "Number of samples:") x_min = gr.Slider(-3, 0, value=-2, step=0.1, label="X Min:") x_max = gr.Slider(0, 3, value=2, step=0.1, label="X Max:") y_min = gr.Slider(-3, 0, value=-2, step=0.1, label="Y Min:") y_max = gr.Slider(0, 3, value=2, step=0.1, label="Y Max:") random = gr.Button("Randomize data") with gr.Accordion(label = "Visual parameters"): with gr.Row(): color1 = gr.ColorPicker(label = 'Pick color one:', value = '#9abfd8') color2 = gr.ColorPicker(label = 'Pick color two:', value = '#371c4b') #dpi = gr.Slider(50, 100, value = 75, step = 1, label = "Set the resolution: ") dpi = gr.Radio(list(res.keys()), value = 'Medium', label = "Select the plot size:") params2 = [color1, color2, dpi] random.click(fn=clf_kernel, inputs=[color1, color2, dpi,samples, x_min, x_max, y_min, y_max], outputs=[plot,X]) for i in params2: i.change(fn=clf_kernel, inputs=[color1, color2,dpi], outputs=[plot, X]) demo.load(fn=clf_kernel, inputs=[color1, color2, dpi], outputs=[plot,X]) gr.HTML(made) gr.HTML(link) demo.launch()