import gradio as gr import numpy as np from matplotlib import pyplot as plt from sklearn import linear_model, datasets theme = gr.themes.Monochrome( primary_hue="indigo", secondary_hue="blue", neutral_hue="slate", ) model_card = f""" ## Description **Random sample consensus (RANSAC)** is a method to estimate a mathematical model from a set of observed data that may have some wrong information. The number of times it tries affects how likely it is to get a good answer. **RANSAC** is commonly used in photogrammetry to solve problems with linear or non-linear regression. It works by separating the input data into two groups: inliers (which may have some noise) and outliers (which are wrong data). It estimates the model only using the inliers. In this demo, a simulation regression dataset with noise is created, and then compare the results of fitting data in **Linear model** and **RANSAC**. You can play around with different ``number of samples`` and ``number of outliers`` to see the effect ## Dataset Simulation dataset """ def do_train(n_samples, n_outliers): X, y, coef = datasets.make_regression( n_samples=n_samples, n_features=1, n_informative=1, noise=10, coef=True, random_state=0, ) # Add outlier data np.random.seed(0) X[:n_outliers] = 3 + 0.5 * np.random.normal(size=(n_outliers, 1)) y[:n_outliers] = -3 + 10 * np.random.normal(size=n_outliers) # Fit line using all data lr = linear_model.LinearRegression() lr.fit(X, y) # Robustly fit linear model with RANSAC algorithm ransac = linear_model.RANSACRegressor() ransac.fit(X, y) inlier_mask = ransac.inlier_mask_ outlier_mask = np.logical_not(inlier_mask) # Predict data of estimated models line_X = np.arange(X.min(), X.max())[:, np.newaxis] line_y = lr.predict(line_X) line_y_ransac = ransac.predict(line_X) text = f"True coefficients: {coef:.4f}.\nLinear regression coefficients: {lr.coef_[0]:.4f}.\nRANSAC coefficients: {ransac.estimator_.coef_[0]:.4f}." fig, axes = plt.subplots() axes.scatter( X[inlier_mask], y[inlier_mask], color="yellowgreen", marker=".", label="Inliers" ) axes.scatter( X[outlier_mask], y[outlier_mask], color="gold", marker=".", label="Outliers" ) axes.plot(line_X, line_y, color="navy", linewidth=2, label="Linear regressor") axes.plot( line_X, line_y_ransac, color="cornflowerblue", linewidth=2, label="RANSAC regressor", ) axes.legend(loc="lower right") axes.set_xlabel("Input") axes.set_ylabel("Response") return fig, text with gr.Blocks(theme=theme) as demo: gr.Markdown('''

Robust linear model estimation using RANSAC

''') gr.Markdown(model_card) gr.Markdown("Author: Vu Minh Chien. Based on the example from scikit-learn") n_samples = gr.Slider(minimum=500, maximum=5000, step=500, value=500, label="Number of samples") n_outliers = gr.Slider(minimum=25, maximum=250, step=25, value=25, label="Number of outliers") with gr.Row(): with gr.Column(): plot = gr.Plot(label="Compare Linear regressor and RANSAC") with gr.Column(): results = gr.Textbox(label="Results") n_samples.change(fn=do_train, inputs=[n_samples, n_outliers], outputs=[plot, results]) n_outliers.change(fn=do_train, inputs=[n_samples, n_outliers], outputs=[plot, results]) demo.launch()